Evaluation of residual stress relaxation and its effect on fatigue strength of AISI 316L stainless steel ground surfaces: Experimental and numerical approaches
Article dans une revue avec comité de lecture
Date
2013Journal
International Journal of FatigueAbstract
This paper is aimed at evaluating the residual stress relaxation and its effect on the fatigue strength of AISI 316L steel ground surfaces in comparison to electro-polished surfaces. An experimental evaluation was performed using 3-point and 4-point bending fatigue tests at Rr = 0.1 on two sets of notched spec-imens finished by electro-polishing and grinding. The residual stress fields were measured at the notch root of specimens, before and after fatigue tests, by means of the X-ray diffraction technique. It was found a degradation of about 35% for the 4-point bending fatigue limit at 2 106 cycles of the ground spec-imens in comparison to the electro-polished ones. This degradation is associated with a slight relaxation of the grinding residual stresses which remain significant tensile stresses at the stabilized state. While under the 3-point bending test, these residual stresses relax completely and provoke a noticeable increase of the fatigue limit estimated at about 50% in comparison to the 4-point bending fatigue test. The numerical evaluation of residual stress relaxation was carried out by FE analyses of the cyclic hard-ening behaviour of the ground layer. The isotropic and nonlinear kinematic model proposed by Chaboche was used and calibrated for the base material and the ground layer. The results show that residual stres-ses relax to a stabilized state characterized by elastic-shakedown response. This stabilization is occurred after the first cycle of the 4-point bending test corresponding to the higher stress concentration (Kt- 4p = 1.66), while it requires many cycles under the 3-point bending test corresponding to the lower stress concentration (Kt-3p = 1.54). The incorporation of stabilized residual stress values into the Dang Van’s cri-terion has permitted to predict with an acceptable accuracy the fatigue limits under both bending modes.
Files in this item
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lectureThe effects of hammering by wire brush as a method of improving low cycle fatigue life of highly ductile austenitic stainless steel AISI 304 have been investigated through an experimental study combining imposed strain ...
-
Assessment of low cycle fatigue improvement of machined AISI 316 stainless steel by brush hammering Article dans une revue avec comité de lectureSIDHOM, Naziha; MAKHLOUF, Kamel; KHLIFI, Ammar; SIDHOM, Habib; BRAHAM, Chedly (Wiley-Blackwell, 2014)The effects of wire brush hammering on low cycle fatigue behaviour of AISI 316 austenitic stainless steel has been investigated on turned samples through an experimental study combining strain controlled fatigue tests, ...
-
Article dans une revue avec comité de lectureThe effects of milling as machining process and a post-machining treatment by wire-brush hammering, on the near surface layer characteristics of AA 5083-H111 were investigated. Surface texture, work-hardening and residual ...
-
Article dans une revue avec comité de lectureRHOUMA, Amir Ben; SIDHOM, Naziha; MAKHLOUF, Kamel; SIDHOM, Habib; GONZÁLEZ, Gonzalo; BRAHAM, Chedly (Springer Verlag, 2019)The effects of machining such as grinding and turning on the microstructural and mechanical changes of the machined surfaces of AISI 316L stainless steel (SS) have been studied. Surface aspects and surface defects have ...
-
Article dans une revue avec comité de lectureSIDHOM, Habib; GHANEM, Farhat; AMADOU, Tidiane; GONZALEZ, Gonzalo; BRAHAM, Chedly (Springer Verlag, 2013)The localised corrosion resistance of austenitic stainless steels is strongly influenced by the quality of finished surface. EDM machining induces substantial changes by the high thermal gradients generated by electric ...