A multi-scale coupling method to simulate the silica glass behavior under high pressures
Communication sans acte
Date
2013Abstract
The response of glasses subjected to high pressures can be classified into three classes : normal, anomalous and intermediate depending on the deformation mechanism and the cracking pattern. The silica glass which is the scope of this work is a typical anomalous glass. The numerical study of this behavior with continuum methods (e.g. FEM, CNEM) presents several difficulties and drawbacks. Because, this requires a very small scale analysis. The discrete methods (e.g. MD, DEM) represent a good choice to simulate this behavior. However, these methods are very time consuming (CPU-wise). In this work, a discrete-continuum coupling method is proposed to study the behavior of this brittle material subjected to high pressures. The coupling results, obtained in this work, compare favorably with past experimental results.
Files in this item
Related items
Showing items related by title, author, creator and subject.
-
Communication avec acteThe indentation response of glasses can be classified into three classes : normal, anomalous and intermediate depending on the deformation mechanism and the cracking response. Silica glass, as a typical anomalous glass, ...
-
Article dans une revue avec comité de lectureThe indentation response of glasses can be classified under three headings: normal, anomalous and intermediate, depending on the deformation mechanism and the cracking response. Silica glass, as a typical anomalous glass, ...
-
Article dans une revue avec comité de lectureANDRE, Damien; CHARLES, Jean-Luc; NEAUPORT, Jérôme; IORDANOFF, Ivan; JEBAHI, Mohamed (Elsevier, 2013)The mechanical behavior of materials is usually simulated by a continuous mechanics approach. However, noncontinuous phenomena such as multi-fracturing cannot be accurately simulated using a continuous description. The ...
-
Article dans une revue avec comité de lectureThe coupling between two dissimilar numerical methods presents a major challenge, especially in case of discrete–continuum coupling. The Arlequin approach provides a flexible framework and presents several advantages in ...
-
Article dans une revue avec comité de lectureMultiscale modeling aims to solve problems at the engineering (macro) scale while considering the complexity of the microstructure with minimum cost. Generally, two scales are considered in multiscale modeling: small scale, ...