• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)
  • View Item
  • Home
  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Identifying and remeshing contact interfaces in a polyhedral assembly for digital mock-up applications

Type
Articles dans des revues avec comité de lecture
Author
CHOUADRIA, RYM
178374 Laboratoire des Sciences de l'Information et des Systèmes : Ingénierie Numérique des Systèmes Mécanique [LSIS- INSM]
VERON, Philippe
178374 Laboratoire des Sciences de l'Information et des Systèmes : Ingénierie Numérique des Systèmes Mécanique [LSIS- INSM]

URI
http://hdl.handle.net/10985/8366
DOI
10.1007/s00366-006-0029-7
Date
2006
Journal
Engineering With Computers

Abstract

Polyhedral models are widely used for applications such as manufacturing, digital simulation or visualization. They are discrete models; easy to store, to manipulate, allowing levels of resolution for visualization. They can be easily exchanged between CAD systems without loss of data. Previous works (Comput Aided Des 29(4):287–298, 1997, Comput Graphics 22(5):565–585, 1998) have focused on simplification process applied to polyhedral part models. The goal of the proposed approach is to extend these processes to polyhedral assembly models, describing the digital mock-up of a future manufacturing product. To apply simplification techniques or other processes on polyhedral assemblies, contact surfaces between interacting objects have to be identified and specific constraints must be applied for processing. The approach proposed allows checking and maintaining a global consistency of the assembly model to ensure the reliability of the future processes. Thus, contacts between objects are detected using an approach that works for a static configuration of the assembly. Finally, a precise detection of the faces involved in each contact area is made and the resulting input domains identified are processed using a local Frontal Delaunay re-meshing technique to produce an identical tessellation on both objects involved in the processed contact. The quality of the triangulation produced is also checked.

Files in this item

Name:
LSIS_EWC_VERON_2006.pdf
Size:
1.171Mb
Format:
PDF
View/Open

Collections

  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)

Related items

Showing items related by title, author, creator and subject.

  • Direct modification of semanticaly-enriched finite element meshes 
    LOU, Ruding; GIANNINI, Franca; FALCIDIENO, Bianca; PERNOT, Jean-Philippe; VERON, Philippe; MIKCHEVITCH, Alexei; MARC, Raphael (World Scientific Publishing Company, 2010)
    Behaviour analysis loop is largely performed on virtual product model before its physical manufacturing. The last avoids high expenses in terms of money and time spent on intermediate manufacturing. It is gainful from the ...
  • Repairing triangle meshes built from scanned point cloud 
    PERNOT, Jean-Philippe; MORARU, George; VERON, Philippe (Taylor & Francis, 2007)
    The Reverse Engineering process consists of a succession of operations that aim at creating a digital representation of a physical model. The reconstructed geometric model is often a triangle mesh built from a point cloud ...
  • Merging enriched Finite Element triangle meshes for fast prototyping of alternate solutions in the context of industrial maintenance 
    LOU, Ruding; PERNOT, Jean-Philippe; MIKCHEVITCH, Alexei; VERON, Philippe (Elsevier, 2010)
    A new approach to the merging of Finite Element (FE) triangle meshes is proposed. Not only it takes into account the geometric aspects, but it also considers the way the semantic information possibly associated to the ...
  • Reusing heterogeneous data for the conceptual design of shapes in virtual environments 
    LI, Zongcheng; GIANNINI, Franca; PERNOT, Jean-Philippe; VERON, Philippe; FALCIDIENO, Bianca (Springer, 2016)
    Today, digital data such as 2D images, 3D meshes and 3D point clouds are widely used to design virtual environments (VE). Most of the time, only one type of those multimodal data is used to describe and specify the shapes ...
  • Parts internal structure definition using lattice patterns optimization for mass reduction in additive manufacturing 
    CHOUGRANI, Laurent; VERON, Philippe; PERNOT, Jean-Philippe; ABED, Stéphane (2016)
    With the rise of additive manufacturing, complex internal structure optimization is now a relevant topic. Additive manufacturing allows designers and engineers to go further in their modeling, designing and optimization ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales