Numerical modelling of laser rapid prototyping by fusion wire deposit
Article dans une revue avec comité de lecture
Date
2010Journal
International Journal of Material FormingAbstract
A finite element model has been developed to simulate an innovative laser rapid prototyping process. Several numerical developments have been implemented in order to simulate the main steps of the rapid prototyping process: injection, heating, phase change and deposit. The numerical model also takes into account different phenomena: surface tension in the liquid state, asborptivity and plasma effects during materiallaser interaction. The threedimensional model is based on the lagrangian approach used in the Forge® finite element software. The thermal model coupled with materiallaser model is compared and gives good agreements. Simulations of the rapid prototyping are compared with experimental results.
Files in this item
Related items
Showing items related by title, author, creator and subject.
-
Communication avec acteOUALLAM, Seddik; DJEGHLAL, Lamine; KABBA, L; MASSE, Jean-Eric; BARRALLIER, Laurent (Congrès Français de Mécanique, 2013)Recent programs of aircraft design are characterized in terms of materials, by introducing weldable alloys as alternatives to the traditional technique of riveting, open the way to reduce weight and allow cost reductions ...
-
Article dans une revue avec comité de lectureThe temperature evolution during friction stir welding (FSW) and the resulting residual stresses of AZ31 Mg alloy were studied to get a better understanding of the mechanisms involved in this process. The relationship ...
-
Residual stress evolution analysis in AZ31 friction stir welds using X-Ray and neutron diffraction Communication avec acteCOMMIN, Loreleï; MASSE, Jean-Eric; BARRALLIER, Laurent (JCPDS - International Centre for Diffraction Data, 2009)The challenges of weight reduction in aerospace industry have drawn considerable interest in magnesium alloys technologies. Assessing the efficiency of new joining techniques, as Friction Stir Welding (FSW) is then required. ...
-
Article dans une revue avec comité de lectureCOMMIN, Loreleï; ROTINAT, René; PIERRON, Fabrice; DUMONT, Myriam; MASSE, Jean-Eric; BARRALLIER, Laurent (Elsevier, 2011)AZ31 hot rolled magnesium alloy presents a strong basal texture. Using laser beam welding (LBW) as a joining process induces high temperature gradients leading to major texture changes. EBSD was used to study the texture ...
-
Article dans une revue avec comité de lectureBELHADJ, Asma; BESSROUR, Jamel; BOUHAFS, Mahmoud; MASSE, Jean-Eric; BARRALLIER, Laurent (Elsevier, 2010)In this paper, a three-dimensional finite element model is developed to simulate thermal history magnesium-based alloys during laser beam welding. Space–time temperature distributions in weldments are predicted from the ...