Experimental study of blade rigidity effects on the global and the local performances of a thick blades axial-flow fan
Communication avec acte
Abstract
An experimental investigation on the aerodynamic performances of thick blades axial-flow fans was carried out in this study. Two fans are considered, the first one is rotomoulded (in plastic) and the second one is milled (in aluminium). Both have exactly the same shape, excepting that the rotomoulded fan has hollow blades. They were designed from an existing fan (manufactured by plastic injection process) used in the cooling system of an automotive vehicle power unit. As far as shape is concerned, the only difference between the two first fans and the traditional injected fan is the blade thickness, whereas as far as rigidity is concerned, the only difference between the rotomoulded and the milled fans is the ability of the rotomoulded fan to be deformed easier than the milled fan. The aim of this study is to determine on the one hand the influence of the blade thickness and on the other hand the way the deformation of the hollow blades may affect the global and the local performances. The global performances of the fans were measured in a test bench designed according to the ISO 5801 standards. The curve of the aerodynamics characteristics (pressure head versus flow rate) and of the global efficiency are slightly lower for the rotomoulded fan. The wall pressure fluctuations were also investigated for three flow rates: one corresponding to the maximum efficiencies of both fans and two others corresponding to an under-flow and an over-flow rate. The power spectral density (PSD) levels, estimated by the Welch method, are between six and nine times higher for the rotomoulded fan at nominal flow rate. At partial flow rate, however, the PSD levels are close for both fans.
Files in this item
Collections
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lectureThe purpose of this work is to study the effects of blade thickness on the performances of an axial-flow fan. Two fans that differ only in the thickness of their blades were studied. The first fan was designed to be part of ...
-
Article dans une revue avec comité de lectureNOURI, Hussain; SARRAF, Christophe; REY, Robert; RAVELET, Florent; BAKIR, Farid (American Society of Mechanical Engineers, 2012)An experimental study on the design of counter-rotating axial-flow fans was carried out. The fans were designed using an inverse method. In particular, the system is designed to have a pure axial discharge flow. The ...
-
Communication avec acteAn experimental study on counter-rotating axial-flow fans was carried out. The fans of diameter D = 375 mm were designed using an inverse method. The counter-rotating fans operate in a ducted-flow configuration and the ...
-
Article dans une revue avec comité de lectureThe purpose of this work is to study the effects of blade thickness on the performances of an axial-flow fan. Two fans that differ only in the thickness of their blades were studied. The first fan was designed to be part ...
-
Article dans une revue avec comité de lectureNOURI, Hussain; DANLOS, Amélie; RAVELET, Florent; SARRAF, Christophe; BAKIR, Farid (American Society of Mechanical Engineers, 2013)The purpose of this work is to study experimentally the aerodynamic characteristics of a subsonic counter-rotating axial-flow fans system operating in a ducted configuration. The fans of diameter D = 375 mm were designed ...