An experimental investigation of the behaviour of steels over large temperature and strain rate ranges
Article dans une revue avec comité de lecture
Date
2013Journal
International Journal of Mechanical SciencesAbstract
During forging and machining manufacturing processes, the material is subject to large strains at high strain rates which provoke local heating and microstructural changes. Modelling of these phenomena requires precise knowledge of the stress–strain constitutive equations for a large range of strains, strain rates and temperatures. An experimental study of the rheology of both hyper- and hypo-eutectoid steels (with different microstructures) over a temperature range from 20°C to 1000°C and with strain rates from 0.01 to 100 000 s-1 has been undertaken. These tests were performed in compression on cylindrical specimens and in shear using hat-shaped specimens. Both a GLEEBLE 3500 thermomechanical testing machine and a Split-Hopkinson Pressure Bar apparatus were used. From these tests, three deformation domains have been identified as a function of the material behaviour and of the changes in the deformed microstructure. Each domain was characterized by its behaviour, including the competition between hardening and softening, strain rate sensitivity on the flow stress and the softening phenomenon (i.e. recrystallisation or recovery, etc.). Finally, based on thermodynamical considerations, the conditions of thermoplastic instability (i.e. shear bands, twinning, heterogeneities, etc.) and microstructural changes are highlighted using process maps of the dissipated power repartition.
Files in this item
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lectureA review of the different phenomenological thermo-viscoplastic constitutive models often applied to forging and machining processes is presented. Several of the most common models have been identified using a large ...
-
Article dans une revue avec comité de lectureThe Ti533-3 alloy is a new titanium alloy which is starting to see increased use in the aeronautical domain to improve the durability of components and to optimize the weight/resistance ratio. This alloy is characterized ...
-
Article dans une revue avec comité de lectureLaser Assisted Machining (LAM) improves the machinability of materials by locally heating the workpiece just prior to cutting. Experimental investigations have confirmed that the cutting force can be decreased, by as much ...
-
Article dans une revue avec comité de lectureHigh pressure water jet assisted turning (HPWJAT) consists of projecting a high pressure water jet, up to several hundred bar, into the tool-workpiece interface. The water jet is directed between the chip and the tool ...
-
Article dans une revue avec comité de lectureACHOURI, Mohamed; GERMAIN, Guénaël; DAL SANTO, Philippe; BOUDE, Serge; LEBRUN, Jean-Lou; SAIDANE, Delphine (Trans Tech Publications, 2011)This work deals a contribution to ductile damage of High-Strength Low-Alloy (HSLA) steel steels under low stress triaxiality. This work is based on micrographics observations and in situ shear tests to examine the evolution ...