• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Dynamique des Fluides (DynFluid)
  • View Item
  • Home
  • Dynamique des Fluides (DynFluid)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Global and Koopman modes analysis of sound generation in mixing layers

Article dans une revue avec comité de lecture
Author
SONG, Ge
ALIZARD, Frédéric
ccROBINET, Jean-Christophe
134975 Laboratoire de Dynamique des Fluides [DynFluid]
ccGLOERFELT, Xavier

URI
http://hdl.handle.net/10985/8642
DOI
10.1063/1.4834438
Date
2013
Journal
Physics of Fluids

Abstract

It is now well established that linear and nonlinear instability waves play a significant role in the noise generation process for a wide variety of shear flows such as jets or mixing layers. In that context, the problem of acoustic radiation generated by spatially growing instability waves of two-dimensional subsonic and supersonic mixing layers are revisited in a global point of view, i.e., without any assumption about the base flow, in both a linear and a nonlinear framework by using global and Koopman mode decompositions. In that respect, a timestepping technique based on disturbance equations is employed to extract the most dynamically relevant coherent structures for both linear and nonlinear regimes. The present analysis proposes thus a general strategy for analysing the near-field coherent structures which are responsible for the acoustic noise in these configurations. In particular, we illustrate the failure of linear global modes to describe the noise generation mechanism associated with the vortex pairing for the subsonic regime whereas they appropriately explain the Mach wave radiation of instability waves in the supersonic regime. By contrast, the Dynamic Mode Decomposition (DMD) analysis captures both the near-field dynamics and the far-field acoustics with a few number of modes for both configurations. In addition, the combination of DMD and linear global modes analyses provides new insight about the influence on the radiated noise of nonlinear interactions and saturation of instability waves as well as their interaction with the mean flow.

Files in this item

Name:
DYNFLUID_POF_2013_SONG.pdf
Size:
12.78Mb
Format:
PDF
Description:
document article post-print
View/Open

Collections

  • Dynamique des Fluides (DynFluid)

Related items

Showing items related by title, author, creator and subject.

  • A domain decomposition matrix-free method for global linear stability 
    Article dans une revue avec comité de lecture
    ALIZARD, Frédéric; ccROBINET, Jean-Christophe; ccGLOERFELT, Xavier (Elsevier, 2012)
    This work is dedicated to the presentation of a matrix-free method for global linear stability analysis in geometries composed of multi-connected rectangular subdomains. An Arnoldi technique using snapshots in subdomains ...
  • Investigation of the dynamics in separated turbulent flow 
    Article dans une revue avec comité de lecture
    FADLA, Fawzi; ALIZARD, Frédéric; KEIRSBULCK, Laurent; LAVAL, Jean-Philippe; FOUCAUT, Jean-Marc; CHOVET, Camila; LIPPERT, Marc; ccROBINET, Jean-Christophe (Elsevier, 2019)
    Dynamical behavior of the turbulent channel flow separation induced by a wall-mounted two-dimensional bump is studied, with an emphasis on unsteadiness characteristics of vortical motions evolving in the separated flow. ...
  • The onset of three-dimensional centrifugal global modes and their nonlinear development in a recirculating flow over a flat surface 
    Article dans une revue avec comité de lecture
    CHERUBINI, Stefania; DE PALMA, Pietro; ALIZARD, Frédéric; ccROBINET, Jean-Christophe (American Institute of Physics, 2010)
    The three-dimensional stability dynamics of a separation bubble over a flat plate has been studied in both linear and nonlinear conditions. Using a global eigenvalue analysis, two centrifugal global modes are identified: ...
  • Sensitivity and optimal forcing response in separated boundary layer flows 
    Article dans une revue avec comité de lecture
    ALIZARD, Frédéric; CHERUBINI, Stefania; ccROBINET, Jean-Christophe (American Institute of Physics, 2009)
    The optimal asymptotic response to time harmonic forcing of a convectively unstable two-dimensional separated boundary layer on a flat plate is numerically revisited from a global point of view. By expanding the flow ...
  • Global Instability in Shock Wave Laminar Boundary-Layer Interaction 
    Communication avec acte
    GUIHO, F.; ALIZARD, Frédéric; ccROBINET, Jean-Christophe (Springer, 2015)
    The linear global stability of an interaction between an oblique shock wave and a laminar boundary layer is carried out for various oblique shock angles. It is illustrated that such a flow acts as a noise amplifier. The ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales