A domain decomposition matrix-free method for global linear stability
Article dans une revue avec comité de lecture
Date
2012Journal
Computers & FluidsAbstract
This work is dedicated to the presentation of a matrix-free method for global linear stability analysis in geometries composed of multi-connected rectangular subdomains. An Arnoldi technique using snapshots in subdomains of the entire geometry combined with a multidomain linearized Direct Numerical Finite difference simulations based on an influence matrix for partitioning are adopted. The method is illustrated by three benchmark problems: the lid-driven cavity, the square cylinder and the open cavity flow. The efficiency of the method to extract large-scale structures in a multidomain framework is emphasized. The possibility to use subset of the full domain to recover the perturbation associated with the entire flow field is also highlighted. Such a method appears thus a promising tool to deal with large computational domains and three-dimensionality within a parallel architecture.
Files in this item
Collections
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lectureSONG, Ge; ALIZARD, Frédéric; ROBINET, Jean-Christophe; GLOERFELT, Xavier (American Institute of Physics, 2013)It is now well established that linear and nonlinear instability waves play a significant role in the noise generation process for a wide variety of shear flows such as jets or mixing layers. In that context, the problem ...
-
Article dans une revue avec comité de lectureFADLA, Fawzi; ALIZARD, Frédéric; KEIRSBULCK, Laurent; LAVAL, Jean-Philippe; FOUCAUT, Jean-Marc; CHOVET, Camila; LIPPERT, Marc; ROBINET, Jean-Christophe (Elsevier, 2019)Dynamical behavior of the turbulent channel flow separation induced by a wall-mounted two-dimensional bump is studied, with an emphasis on unsteadiness characteristics of vortical motions evolving in the separated flow. ...
-
Article dans une revue avec comité de lectureCHERUBINI, Stefania; DE PALMA, Pietro; ALIZARD, Frédéric; ROBINET, Jean-Christophe (American Institute of Physics, 2010)The three-dimensional stability dynamics of a separation bubble over a flat plate has been studied in both linear and nonlinear conditions. Using a global eigenvalue analysis, two centrifugal global modes are identified: ...
-
Article dans une revue avec comité de lectureALIZARD, Frédéric; CHERUBINI, Stefania; ROBINET, Jean-Christophe (American Institute of Physics, 2009)The optimal asymptotic response to time harmonic forcing of a convectively unstable two-dimensional separated boundary layer on a flat plate is numerically revisited from a global point of view. By expanding the flow ...
-
Communication avec acteThe linear global stability of an interaction between an oblique shock wave and a laminar boundary layer is carried out for various oblique shock angles. It is illustrated that such a flow acts as a noise amplifier. The ...