Plastic deformation of rough rolling contact: An experimental and numerical investigation
Article dans une revue avec comité de lecture
Abstract
Quantifying the surface roughness evolution in contacts is a crucial step in the fatigue prediction process. Surfaces are initially conditioned by the running-in process and later altered by surface fatigue. The aim of this study is to understand and predict the evolution of the micro-geometry in the first few over-rolling cycles. Numerical predictions are validated by experiments. A major difficulty in understanding surface degradation is the measurement of the surface roughness evolution at the relevant scales. A twin disc micro-test rig, called μMag, was specially designed for this kind of analysis. The μMag allows the “in situ” observation of changes in the disc surface during interrupted tests, thus avoiding dismounting the specimens, which is a major cause of inaccuracy. The new method also maintains the relative position of the two discs. The precision of the measurements allows one to use the initial surface micro-geometry as input for the numerical contact calculation. Thus, the plastic deformation of the surfaces can be measured during the first cycles and compared to the numerical prediction. Results show a very good agreement between numerical predictions and experimental measurements.
Files in this item
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lectureHEBERT, David; BERTRON, I; CHEVALIER, J.M; HALLO, L; LESCOUTE, Emilien; VIDEAU, Laurent; COMBIS, Patrick; GUILLET, F; BERTHE, Laurent; SEISSON, G.; BOUSTIE, Michel (Elsevier, 2013)The cratering process in brittle materials under hypervelocity impact (HVI) is of major relevance for debris shielding in spacecraft or high-power laser applications. Amongst other materials, carbon is of particular interest ...
-
Article dans une revue avec comité de lectureBARDY, Simon; AUBERT, Bertrand; BERTHE, Laurent; COMBIS, Patrick; HEBERT, David; LESCOUTE, Emilien; RULLIER, Jean-Luc; VIDEAU, Laurent (SPIE, 2017)In order to control laser-induced shock processes, two main points of interest must be fully understood: the laser–matter interaction generating a pressure loading from a given laser intensity profile and the propagation ...
-
Article dans une revue avec comité de lectureSEISSON, G; HEBERT, David; BERTRON, I; CHEVALIER, J.M; HALLO, L; LESCOUTE, Emilien; VIDEAU, Laurent; COMBIS, Patrick; GUILLET, F; BOUSTIE, Michel; BERTHE, Laurent (Elsevier, 2013)The cratering process in brittle materials under hypervelocity impact (HVI) is of major relevance for debris shielding in spacecraft or high-power laser applications. Amongst other materials, carbon is of particular interest ...
-
Article dans une revue avec comité de lecturePHIPPS, Claude R.; BONNAL, Christophe; MASSON, Frédéric; BOUSTIE, Michel; BERTHE, Laurent; BATON, Sophie D; BRAMBRINK, Erik; CHEVALIER, Jean Marc; VIDEAU, Laurent; BOYER, Séverine A.E; SCHNEIDER, Matthieu (Elsevier, 2018)New data on some materials at 80ps pulse duration and 1057 nm wavelength give us the option of proportionally combining them to obtain arbitrary values between 35 (aluminum) and 800 N/MW (POM, polyoxymethylene) for momentum ...
-
Article dans une revue avec comité de lecturePHIPPS, Claude R.; BOUSTIE, Michel; CHEVALIER, Jean Marc; BATON, Sophie D.; BRAMBRINK, Erik; BERTHE, Laurent; SCHNEIDER, Matthieu; VIDEAU, Laurent; BOYER, Séverine A.E.; SCHARRING, Stefan (American Institute of Physics, 2017)At the École Polytechnique « LULI » facility, we have measured the impulse coupling coefficient Cm (target momentum per joule of incident laser light) with several target materials in vacuum, at 1057 nm and 400 fs and 80 ...