• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Institut de Recherche de l’École navale (IRENAV)
  • View Item
  • Home
  • Institut de Recherche de l’École navale (IRENAV)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Multicomponent AM-FM signals analysis based on EMD-B-splines ESA

Analyse des signaux AM-FM basée sur une version B-splines de l'EMD-ESA

Article dans une revue avec comité de lecture
Author
BOUCHIKHI, Abdelkhalek
ccBOUDRAA, Abdel-Ouahab
13094 Institut de Recherche de l'Ecole Navale [IRENAV]

URI
http://hdl.handle.net/10985/9053
DOI
10.1016/j.sigpro.2012.02.014
Date
2012
Journal
Signal Processing

Abstract

In this paper a signal analysis framework for estimating time-varying amplitude and frequency functions of multicomponent amplitude and frequency modulated (AM–FM) signals is introduced. This framework is based on local and non-linear approaches, namely Energy Separation Algorithm (ESA) and Empirical Mode Decomposition (EMD). Conjunction of Discrete ESA (DESA) and EMD is called EMD–DESA. A new modified version of EMD where smoothing instead of an interpolation to construct the upper and lower envelopes of the signal is introduced. Since extracted IMFs are represented in terms of B-spline (BS) expansions, a closed formula of ESA robust against noise is used. Instantaneous Frequency (IF) and Instantaneous Amplitude (IA) estimates of a multi- component AM–FM signal, corrupted with additive white Gaussian noise of varying SNRs, are analyzed and results compared to ESA, DESA and Hilbert transform-based algorithms. SNR and MSE are used as figures of merit. Regularized BS version of EMD– ESA performs reasonably better in separating IA and IF components compared to the other methods from low to high SNR. Overall, obtained results illustrate the effective- ness of the proposed approach in terms of accuracy and robustness against noise to track IF and IA features of a multicomponent AM–FM signal.

Files in this item

Name:
IRENav_Signal_Processing_2012_ ...
Size:
2.691Mb
Format:
PDF
Description:
document article principal
View/Open

Collections

  • Institut de Recherche de l’École navale (IRENAV)

Related items

Showing items related by title, author, creator and subject.

  • Analysis of multicomponent LFM signals by Teager-Huang-Hough Transform 
    Article dans une revue avec comité de lecture
    BOUCHIKHI, Abdelkhalek; ccBOUDRAA, Abdel-Ouahab; CEXUS, Jean-Christophe; CHONAVEL, Thierry (Institute of Electrical and Electronics Engineers, 2014)
    A novel detection approach of linear FM (LFM) signals, with single or multiple components, in the time-frequency plane of Teager-Huang (TH) transform is presented. The detection scheme that combines TH transform and Hough ...
  • Psi_B-energy operator and cross-power spectral density 
    Article dans une revue avec comité de lecture
    ccBOUDRAA, Abdel-Ouahab; CHONAVEL, Thierry; CEXUS, Jean-Christophe (Elsevier, 2014)
    In this paper we consider the hermitian extension of the cross-Psi_B-energy operator that we will denote by Psi_H. In addition, cross energy terms are formalized through multivariate signals representation. We investigate ...
  • Débruitage fréquentiel de signaux par EMD 
    Communication avec acte
    KOMATY, Ali; DARE-EMZIVAT, Delphine; ccBOUDRAA, Abdel-Ouahab (2013)
    Dans cet article, nous proposons un nouveau schéma de débruitage des signaux basé sur la décomposition modale empirique associée à une analyse fréquentielle. Le principe de l’approche consiste à seuiller les modes extraits ...
  • Instantaneous frequency estimation of FM signals by Psi_B-energy operator 
    Article dans une revue avec comité de lecture
    ccBOUDRAA, Abdel-Ouahab (IET, 2011)
    Psi_B energy operator is an extension of the cross Teager-Kaiser energy operator which is an non-linear energy tracking operator to deal with complex signals and its usefulness for non-stationary signals analysis has been ...
  • Voiced speech enhancement based on adaptive filtering of selected intrinsic mode functions 
    Article dans une revue avec comité de lecture
    KHALDI, Kais; TURKI, Monia; ccBOUDRAA, Abdel-Ouahab (World Scientific, 2010)
    In this paper a new method for voiced speech enhancement combining the Empirical Mode Decomposition (EMD) and the Adaptive Center Weighted Average (ACWA) filter is introduced. Noisy signal is decomposed adaptively into ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales