• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • Voir le document
  • Accueil de SAM
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Probabilistic Multi-class Classifier for Structural Health Monitoring

Article dans une revue avec comité de lecture
Auteur
URIBE, Juan Sebastian
ccMECHBAL, Nazih
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
ccRÉBILLAT, Marc

URI
http://hdl.handle.net/10985/9287
DOI
10.1016/j.ymssp.2015.01.017
Date
2015
Journal
Mechanical Systems and Signal Processing

Résumé

In this paper, a probabilistic multi-class pattern recognition algorithm is developed for damage detection, localization, and quantification in smart mechanical structures. As these structures can face damages of different severities located at various positions, multi-class classifiers are naturally needed in that context. Furthermore, because of the lack of available data in the damaged state and of environmental effects, the experimentally obtained damage sensitive features may differ from those learned offline by the classifier. A multiclass classifier that provides probabilities associated with each damage severity and location instead of a binary decision is thus greatly desirable in that context. To tackle this issue, we propose an original support vector machine (SVM) multi-class clustering algorithm that is based on a probabilistic decision tree (PDT) and that produces a posteriori probabilities associated with damage existence, location, and severity. Furthermore, the PDT is here built by iteratively subdividing the surface of the structure and thus takes into account the actual structure geometry. The proposed algorithm is very appealing as it combines both the computational efficiency of tree architectures and the classification accuracy of SVMs. The effectiveness of this algorithm is illustrated experimentally on a composite plate instrumented with piezoelectric elements on which damages are simulated using added masses. Damage sensitive features are computed using an active approach based on the permanent emission of non-resonant Lamb waves into the structure and on the recognition of amplitude disturbed diffraction patterns. On the basis of these damage-sensitive features, the proposed multi-class probabilistic classifier generates decisions that are in excellent agreement with the actual severities and locations of the simulated damages.

Fichier(s) constituant cette publication

Nom:
PIMM-MSP-Mechbal-2015.pdf
Taille:
4.838Mo
Format:
PDF
Fin d'embargo:
2016-06-30
Voir/Ouvrir

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • Probabilistic Decision Trees using SVM for Multi-class Classification 
    Communication avec acte
    URIBE, Juan Sebastian; BOUAMAMA, Karima; PENGOV, Marco; ccMECHBAL, Nazih; ccRÉBILLAT, Marc (IEEE, 2013)
    In the automotive repairing backdrop, retrieving from previously solved incident the database features that could support and speed up the diagnostic is of great usefulness. This decision helping process should give a fixed ...
  • Single atom convolutional matching pursuit: Theoretical framework and application to Lamb waves based structural health monitoring 
    Article dans une revue avec comité de lecture
    ccRODRIGUEZ, Sebastian; ccRÉBILLAT, Marc; ccPAUNIKAR, Shweta; ccMARGERIT, Pierre; ccMONTEIRO, Eric; ccCHINESTA SORIA, Francisco; ccMECHBAL, Nazih (Elsevier BV, 2025-06)
    Lamb Waves (LW) based Structural Health Monitoring (SHM) aims to monitor the health state of thin structures. An Initial Wave Packet (IWP) is sent in the structure and interacts with boundaries, discontinuities, and with ...
  • Hybrid twin applied to structura lhealth monitoring 
    Communication avec acte
    ccRODRIGUEZ, Sebastian; ccDI LORENZO, Daniele; ccCHINESTA SORIA, Francisco; ccMONTEIRO, Eric; ccRÉBILLAT, Marc; ccMECHBAL, Nazih (Dept. of Mechanical Engineering & Aeronautics University of Patras, 2023)
    To ensure the proper functioning of a structure, a monitoring during its life cycle is necessary, with the objective of detecting in time any possible anomalies or damage of the structure. To accomplish this, high fidelity ...
  • In-situ monitoring of µm-sized electrochemically generated corrosion pits using Lamb Waves managed by a sparse array of piezoelectric transducers 
    Communication sans acte
    ccRÉBILLAT, Marc; ccNICARD, Cyril; ccDEVOS, Olivier; ccEL MAY, Mohamed; LETELLIER, Frédéric; THOMACHOT, Matthieu; FOURNIER, Marc; ccMECHBAL, Nazih (2024-09)
    al components, roughening the outer surface, loosening fasteners, hastening cracking, and facilitating the entry of water into electronic fixtures. In 2016, the combined commercial aircraft fleet operated by European ...
  • Improving Lamb Wave detection for SHM using a dedicated LWDS electronics 
    Communication avec acte
    JAUSSAUD, Gladys; REBUFA, Jocelyn; FOURNIER, Marc; LOGEAIS, Matthieu; BENCHEIKH, Nabil; ccMECHBAL, Nazih; ccRÉBILLAT, Marc (NTD, 2019)
    In the context of Condition Based Maintenance (CBM) for aircrafts, Structural Health Monitoring (SHM) is one main field of research. Detection and localization of damages in a structure request reliability of the equipment ...

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales