Residual-based a posteriori error estimation for stochastic magnetostatic problems
Article dans une revue avec comité de lecture
Date
2015Journal
Journal of Computational and Applied MathematicsRésumé
In this paper, we propose an a posteriori error estimator for the numerical approximation of a stochastic magnetostatic problem, whose solution depends on the spatial variable but also on a stochastic one. The spatial discretization is performed with finite elements and the stochastic one with a polynomial chaos expansion. As a consequence, the numerical error results from these two levels of discretization. In this paper, we propose an error estimator that takes into account these two sources of error, and which is evaluated from the residuals.
Fichier(s) constituant cette publication
Cette publication figure dans le(s) laboratoire(s) suivant(s)
Documents liés
Visualiser des documents liés par titre, auteur, créateur et sujet.
-
Article dans une revue avec comité de lectureMAC, Duy Hung; MIPO, Jean-Claude; MOREAU, Olivier; CLENET, Stephane (Institute of Electrical and Electronics Engineers, 2010)A method to solve stochastic partial differential equations on random domains consists in using a one-to-one random mapping function which transforms the random domain into a deterministic domain. With this method, the ...
-
Article dans une revue avec comité de lectureMAC, Duy Hung; MIPO, Jean-Claude; TSUKERMAN, Igor; CLENET, Stephane (Institute of Electrical and Electronics Engineers, 2013)To solve stochastic problems with geometric uncertainties, one can transform the original problem in a domain with stochastic boundaries and interfaces to a problem defined in a deterministic domain with uncertainties in ...
-
Article dans une revue avec comité de lectureMAC, Duy Hung; CLENET, Stephane; MIPO, Jean-Claude (Institution of Engineering and Technology, 2012)Methods are now available to solve numerically electromagnetic problems with uncertain input data (behaviour law or geometry). The stochastic approach consists in modelling uncertain data using random variables. Discontinuities ...
-
Article dans une revue avec comité de lectureMAC, Duy Hung; CLENET, Stephane; MIPO, Jean-Claude (Institute of Electrical and Electronics Engineers, 2011)The numerical solution of partial differential equations onto random domains can be done by using a mapping transforming this random domain into a deterministic domain. The issue is then to determine this one to one random ...
-
Communication avec acteModel order reduction methods, like the proper orthogonal decomposition (POD), enable to reduce dramatically the size of a finite element (FE) model. The price to pay is a loss of accuracy compared with the original FE ...