Uncertainty quantification and sensitivity analysis in electrical machines with stochastically varying machine parameters
Communication avec acte
Abstract
Electrical machines that are produced in mass production suffer from stochastic deviations introduced during the production process. These variations can cause undesired and unanticipated side-effects. Until now, only worst case analysis and Monte-Carlo simulation have been used to predict such stochastic effects and reduce their influence on the machine behavior. However, these methods have proven to be either inaccurate or very slow. This paper presents the application of a polynomialchaos meta-modeling at the example of stochastically varying stator deformations in a permanent-magnet synchronous machine. The applied methodology allows a faster or more accurate uncertainty propagation with the benefit of a zero-cost calculation of sensitivity indices, eventually enabling an easier creation of stochastic insensitive, hence robust designs.
Files in this item
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lectureIn this paper, we propose an a posteriori error estimator for the numerical approximation of a stochastic magnetostatic problem, whose solution depends on the spatial variable but also on a stochastic one. The spatial ...
-
Article dans une revue avec comité de lectureLIU, Sijun; MAC, Hung; MIPO, Jean-Claude; COOREVITS, Thierry; CLENET, Stephane (Institute of Electrical and Electronics Engineers, 2015)In mass production, fabrication processes of electrical machines are not perfectly repeatable with time, leading to dispersions on the dimensions which are not equal to their nominal values. The issue is then to link the ...
-
Communication avec acteModel order reduction methods, like the proper orthogonal decomposition (POD), enable to reduce dramatically the size of a finite element (FE) model. The price to pay is a loss of accuracy compared with the original FE ...
-
Article dans une revue avec comité de lectureTo solve stochastic static field problems, a discretization by the Finite Element Method can be used. A system of equations is obtained with the unknowns (scalar potential at nodes for example) being random variables. To ...
-
Article dans une revue avec comité de lectureMAC, Duy Hung; CLENET, Stephane; MIPO, Jean-Claude (Institution of Engineering and Technology, 2012)Methods are now available to solve numerically electromagnetic problems with uncertain input data (behaviour law or geometry). The stochastic approach consists in modelling uncertain data using random variables. Discontinuities ...