• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Institut de Mécanique et d’Ingénierie de Bordeaux (I2M)
  • View Item
  • Home
  • Institut de Mécanique et d’Ingénierie de Bordeaux (I2M)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

In vitro cartilage culture: flow, transport and reaction in fibrous porous media

Conférence invitée
Author
ccAHMADI-SENICHAULT, Azita
LASSEUX, Didier
LETELLIER, Samuel

URI
http://hdl.handle.net/10985/9753
Date
2007

Abstract

Flow and transport in fibrous media are encountered in a wide variety of domains ranging from biotechnology to filtration in chemical engineering. The context of this work is the in vitro cartilage cell culture on a fibrous biodegradable polymer scaffold placed in a bioreactor. A seeding process using a liquid containing cells (chondrocytes) initiates the culture and an imposed continuous flow through the scaffold allows both the transport of nutrients necessary for cell-growth and of metabolic waste products. This work will attempt to contribute to the study of the hydrodynamics and transport through the fibrous scaffold at different stages of growth, both having a key role in the process of cell growth and on the final quality of the cultured cartilage. The hydrodynamics in the scaffold and in particular the relationship between macroscopic experimentally accessible properties such as the permeability and the porosity have first been studied. For this purpose, the formalism of volume averaging is employed and the associated closure problem is solved numerically with an artificial compressibility algorithm on the basis of a finite volume scheme on a Marker and Cell type of grid. Fibrous media with different microscopic structures are studied. Through a theoretical study, assuming local mass equilibrium, a macroscopic one-equation model describing the reactive transport (advection/diffusion/reaction) of the two species in a three-phase system composed of the cell-phase, a fluid phase and a solid phase is proposed. The volume averaging method is used to develop macroscopic transport equations and associated closure problems. Resolution of the latter over a unit cell representative of a pseudo-periodic medium allows the determination of effective macroscopic properties without any adjustable parameters. The dimensionless form of the closure problems involving advective, diffusive and reactive terms are numerically solved for any 3D geometrical configuration using a finite volume formulation using appropriate schemes. The velocity field input to the model is obtained by the resolution of the Navier-Stokes problem using a modified QUICK scheme and an Artificial Compressibility algorithm. The numerical tool is then validated by comparing its results to those presented in the literature for 2-D unit cells and under-classes of our model (namely, diffusion, diffusion/reaction and diffusion/advection problems). The complete problem involving convection, diffusion and reaction in the three phase system is then studied for different parameters. More precisely, the influence of a cell Peclet number and the solid and cell volume fractions on the dispersion tensor has been studied.

Files in this item

Name:
TREFLE_Ahmadi_2007_Utrecht.pdf
Size:
202.8Kb
Format:
PDF
View/Open

Collections

  • Institut de Mécanique et d’Ingénierie de Bordeaux (I2M)

Related items

Showing items related by title, author, creator and subject.

  • Transport of species in a fibrous media during tissue growth 
    Communication avec acte
    LETELLIER, Samuel; LASSEUX, Didier; ccAHMADI-SENICHAULT, Azita (2007)
    Tissue engineering is of major importance in biomedical transplantation techniques. However, some questions subsist as for example the mass transport between each pahse (cell, fluide and solid). In a previous paper, a ...
  • In-vitro cartilage growth: macroscopic mass transport modelling in a three-phase system 
    Communication sans acte
    LETELLIER, Samuel; ccAHMADI-SENICHAULT, Azita; LASSEUX, Didier (2009)
    Transplantation of engineered tissues is of major interest as an alternative to autogenic alogenic or exogenic grafts. In this study, in vitro cartilage cell culture on a fibrous biodegradable polymer scaffold is under ...
  • Origin of the inertial deviation from Darcy's law: An investigation from a microscopic flow analysis on two-dimensional model structures 
    Article dans une revue avec comité de lecture
    AGNAOU, Mehrez; LASSEUX, Didier; ccAHMADI-SENICHAULT, Azita (American Physical Society (APS), 2017)
    Inertial flow in porous media occurs in many situations of practical relevance among which one can cite flows in column reactors, in filters, in aquifers, or near wells for hydrocarbon recovery. It is characterized by a ...
  • An investigation of inertial one-phase flow in homogeneous model porous media 
    Communication avec acte
    LASSEUX, Didier; ABBASIAN ARANI, Ali Akbar; ccAHMADI-SENICHAULT, Azita (2009)
    Our interest in this work is the stationary one-phase Newtonian flow in a class of homogeneous porous media at large enough flow rates requiring the introduction of the inertial forces at the pore-scale. At the macroscale, ...
  • Résolution numérique de l’écoulement diphasique en milieu poreux hétérogène incluant les effets inertiels 
    Communication avec acte
    ABBASIAN ARANI, Ali Akbar; LASSEUX, Didier; ccAHMADI-SENICHAULT, Azita (2007)
    La mise en place d'un outil numérique 3D de simulation d'écoulement diphasique hors régime de Darcy basé sur le modèle de Darcy-Forchheimer généralisé est présentée. L'outil est tout d’abord validé à l’aide d'une solution ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales