• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)
  • View Item
  • Home
  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Conservative Numerical Methods for the Full von Kármán Plate Equations

Article dans une revue avec comité de lecture
Author
BILBAO, Stefan
ccTHOMAS, Olivier
178374 Laboratoire des Sciences de l'Information et des Systèmes : Ingénierie Numérique des Systèmes Mécaniques [LSIS- INSM]
ccTOUZÉ, Cyril
135261 Unité de Mécanique [UME]
DUCCESCHI, Michele
135261 Unité de Mécanique [UME]

URI
http://hdl.handle.net/10985/9876
DOI
10.1002/num.21974
Date
2015
Journal
Numerical Methods for Partial Differential Equations

Abstract

This article is concerned with the numerical solution of the full dynamical von Kármán plate equations for geometrically nonlinear (large-amplitude) vibration in the simple case of a rectangular plate under periodic boundary conditions. This system is composed of three equations describing the time evolution of the transverse displacement field, as well as the two longitudinal displacements. Particular emphasis is put on developing a family of numerical schemes which, when losses are absent, are exactly energy conserving. The methodology thus extends previous work on the simple von Kármán system, for which longitudinal inertia effects are neglected, resulting in a set of two equations for the transverse displacement and an Airy stress function. Both the semidiscrete (in time) and fully discrete schemes are developed. From the numerical energy conservation property, it is possible to arrive at sufficient conditions for numerical stability, under strongly nonlinear conditions. Simulation results are presented, illustrating various features of plate vibration at high amplitudes, as well as the numerical energy conservation property, using both simple finite difference as well as Fourier spectral discretizations.

Files in this item

Name:
LSIS_NMPDE_2015_THOMAS.pdf
Size:
774.6Kb
Format:
PDF
View/Open

Collections

  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)

Related items

Showing items related by title, author, creator and subject.

  • Identification of mode couplings in nonlinear vibrations of the steelpan 
    Article dans une revue avec comité de lecture
    MONTEIL, Mélodie; ccTHOMAS, Olivier; ccTOUZÉ, Cyril (Elsevier, 2015)
    The vibrations and sounds produced by two notes of a double second steelpan are investigated, the main objective being to quantify the nonlinear energy exchanges occurring between vibration modes that are responsible of ...
  • An upper bound for validity limits of asymptotic analytical approaches based on normal form theory 
    Article dans une revue avec comité de lecture
    LAMARQUE, Claude-Henri; ccTOUZÉ, Cyril; ccTHOMAS, Olivier (Springer Verlag, 2012)
    Perturbation methods are routinely used in all fields of applied mathematics where analytical solutions for nonlinear dynamical systems are searched. Among them, normal form theory provides a reliable method for systematically ...
  • Nonlinear vibrations of steelpans: analysis of mode coupling in view of modal sound synthesis. 
    Communication avec acte
    MONTEIL, Mélodie; ccTOUZÉ, Cyril; ccTHOMAS, Olivier (2013)
    Steelpans are musical percussions made from steel barrels. During the manufacturing, the metal is stretched and bended, to produce a set of thin shells that are the differents notes of the instrument. In normal playing, ...
  • Nonlinear forced vibrations of thin structures with tuned eigenfrequencies: the cases of 1:2:4 and 1:2:2 internal resonances 
    Article dans une revue avec comité de lecture
    MONTEIL, Mélodie; ccTOUZÉ, Cyril; ccTHOMAS, Olivier; ccBENACCHIO, Simon (Springer Verlag, 2014)
    This paper is devoted to the analysis of nonlinear forced vibrations of two particular three degrees-of-freedom (dofs) systems exhibiting second order internal resonances resulting from a harmonic tuning of their natural ...
  • Nonlinear dynamics of coupled oscillators in 1:2 internal resonance: effects of the non-resonant quadratic terms and recovery of the saturation effect 
    Article dans une revue avec comité de lecture
    SHAMI, Zein Alabidin; ccSHEN, Yichang; ccTOUZÉ, Cyril; ccTHOMAS, Olivier; ccGIRAUD-AUDINE, Christophe (Springer Science and Business Media LLC, 2022-08)
    This article considers the nonlinear dynamics of coupled oscillators featuring strong coupling in 1:2 internal resonance. In forced oscillations, this particular interaction is the source of energy exchange, leading to a ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales