Inertial flow in porous media: A numerical investigation on model structures
Date
2013Abstract
The aim of this work is to study the correction to Darcy's law for inertial flow in porous media. In many situations encountered in industrial applications such as flow in column reactors, gas flow near wells for hydrocarbon recovery and CO2 sequestration, flow in filters... , Reynolds numbers are large enough to lead to a non-linear relationship between the filtration velocity and the pressure gradient. In this work, a numerical analysis of the non linear -inertial- correction to Darcy's law is carried out for the stationary inertial flow of a one-phase Newtonian incompressible fluid on model 2D and 3D structures. Effective properties appearing in the macroscopic model resulting from the volume averaging of the mass and momentum (Navier-Stokes) equations at the pore scale are determined using the microscopic flow fields and solving the closure problems resulting from up-scaling. From the numerical simulations, the dependence of the correction to Darcy's law on the geometrical properties of the 3D structure is studied. These properties are the shape of the solid grains which may be cubic or spherical and the degree of disorder in their arrangement in the domain. Weak disorder corresponds to a random placement of the grains of identical shape and size within each cell of a regular 3D lattice, while for strong disorder, grain size is also randomly distributed.
Files in this item
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lectureInertial flow in porous media occurs in many situations of practical relevance among which one can cite flows in column reactors, in filters, in aquifers, or near wells for hydrocarbon recovery. It is characterized by a ...
-
Article dans une revue avec comité de lectureThis work focuses on the occurrence of the first Hopf bifurcation, corresponding to the transition from steady to unsteady flow conditions, on 2D periodic ordered and disordered non-deformable porous structures. The ...
-
Article dans une revue avec comité de lectureRODRIGUEZ DE CASTRO, Antonio; AGNAOU, Mehrez; AHMADI-SENICHAULT, Azita; OMARI, Abdelaziz (Elsevier BV, 2020)Mercury Intrusion Porosimetry (MIP) is still today the reference porosimetry technique despite its environmental health and safety concerns. As a safe alternative, the Yield Stress fluids Method (YSM) consists in computing ...
-
Article dans une revue avec comité de lectureRODRIGUEZ DE CASTRO, Antonio; AGNAOU, Mehrez; AHMADI-SENICHAULT, Azita; OMARI, Abdelaziz (Elsevier BV, 2020)Hydraulic tortuosity is commonly used as an input to macroscopic flow models in porous media, accounting for the sinuosity of the streamlines. It is well known that hydraulic tortuosity does not depend on the applied ...
-
Article dans une revue avec comité de lectureRODRIGUEZ DE CASTRO, Antonio; AGNAOU, Mehrez; AHMADI-SENICHAULT, Azita; OMARI, Abdelaziz (Springer Science and Business Media LLC, 2019)With X-ray computed tomography still being flawed as a result of limitations in terms of spatial resolution and cost, toxic mercury intrusion porosimetry (MIP) is nowadays the prevailing technique to determine PSDs of most ...