One-phase flow in porous media: is the Forchheimer correction relevant?
Date
2012Abstract
Our interest in this work is dedicated to the dependence upon the filtration velocity (or Reynolds number) of the inertial correction to Darcy's law for one-phase flow in homogeneous porous media. The starting point of our analysis is the averaged flow model operating at Darcy's scale. It shows that the inertial correction to Darcy's law involves a second order tensor that can be determined from the solution of the associated closure problem requiring the microscopic (pore-scale) velocity field. Numerical solutions achieved on 2D model structures are presented. The accent is laid upon the role of the Reynolds number, pressure gradient orientation and structural parameters such as porosity and structural disorder. The Forchheimer type of correction, exhibiting a quadratic dependence upon the filtration velocity, is discussed in different situations.
Files in this item
Related items
Showing items related by title, author, creator and subject.
-
Communication avec acteOur interest in this work is the stationary one-phase Newtonian flow in a class of homogeneous porous media at large enough flow rates requiring the introduction of the inertial forces at the pore-scale. At the macroscale, ...
-
Communication avec acteLa mise en place d'un outil numérique 3D de simulation d'écoulement diphasique hors régime de Darcy basé sur le modèle de Darcy-Forchheimer généralisé est présentée. L'outil est tout d’abord validé à l’aide d'une solution ...
-
Communication sans acteThis work focuses on the stationary one-phase Newtonian flow in a class of homogeneous porous media at large enough flow rates leading to a non-linear relationship between the filtration velocity and the pressure gradient. ...
-
Conférence invitéeSignificant inertial effects are observed for many applications such as flow in the near-wellbore region, in very permeable reservoirs or in packed-bed reactors. In these cases, the classical description of two-phase flow ...
-
Article dans une revue avec comité de lectureIn this study, non-Darcy inertial two-phase incompressible and non-stationary flow in heterogeneous porous media is analyzed using numerical simulations. For the purpose, a 3D numerical tool was fully developed using a ...