An extension of the polar method to the First-order Shear Deformation Theory of laminates
Date
2015Journal
Composite StructuresAbstract
In this paper the Verchery's polar method is extended to the conceptual framework of the First-order Shear Deformation Theory (FSDT) of laminates. It will be proved that the number of independent tensor invariants characterising the laminate constitutive behaviour remains unchanged when passing from the context of the Classical Laminate Theory (CLT) to that of the FSDT. Moreover, it will also be shown that, depending on the considered formulation, the elastic symmetries of the laminate shear stiffness matrix depend upon those of membrane and bending stiffness matrices. As a consequence of these results a unified formulation for the problem of designing the laminate elastic symmetries in the context of the FSDT is proposed. The optimum solutions are found within the framework of the polar-genetic approach, since the objective function is written in terms of the laminate polar parameters, while a genetic algorithm is used as a numerical tool for the solution search. In order to support the theoretical results, and also to prove the effectiveness of the proposed approach, some novel and meaningful numerical examples are discussed in the paper.
Files in this item
- Name:
- I2M-IMC_COST_2015_MONTEMURRO-01.pdf
- Size:
- 558.1Kb
- Format:
- Description:
- Full-length article
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lectureIn this paper, a general numerical homogenisation scheme coupled with an efficient modelling strategy for predicting the effective thermoelastic properties of cork-based agglomerates is presented. In order to generate a ...
-
Conférence invitéeThe last decades have been characterized by a growth of raw material demand, in particular due to the consumerism in developed countries and to the fast industrialization of emerging economies. Nowadays, with the aim to ...
-
Article dans une revue avec comité de lectureThis work deals with the multi-scale optimisation of composite structures by adopting a general global-local (GL) modelling strategy to assess the structure responses at different scales. The GL modelling approach is ...
-
Article dans une revue avec comité de lectureThe PrandtlPlane (PrP) aircraft wing-box least-weight design is presented in this work. This design problem is formulated as a constrained non-linear programming problem (CNLPP), by integrating static, buckling, fatigue ...
-
Conférence invitéeIn this work a multi-scale two-level (MS2L) optimisation strategy for optimising variable angle tow (VAT) composites is presented. In the framework of the MS2L methodology [1], [2], [3] the design problem is split and ...