Mechanical link between durotaxis, cell polarity and anisotropy during cell migration
Article dans une revue avec comité de lecture
Date
2015Journal
Physical BiologyAbstract
Cell migration, a fundamental mechanobiological process, is highly sensitive to the biochemical and mechanical properties of the environment. Efficient cell migration is ensured by the intrinsic polarity of the cell, which triggers a transition from an isotropic to an anisotropic configuration of the acto-mysion filaments responsible for the protrusion-contraction movement of the cell. Additionally, polarity may be highly influenced by the substrate rigidity, which results in a phenomenon called durotaxis. In the present work, we propose a two-dimensional finite element model able to capture three main features of cell migration: durotaxis, cell polarity and anisotropy. The cell is modelled as a continuum able to develop cyclic active strains regulated by the polymerization and depolymerization of the acto-myosin filaments and synchronized with the adhesion forces between the cell and the substrate underneath. A generalized Maxwell model is used to describe the viscoelastic behaviour of the cell constituted by a solid anisotropic branch with active strains (i.e. the acto-myosin filaments) and a fluid viscoelastic branch (i.e. the cytoplasm). Several types of substrate have been tested which are homogeneously soft or stiff or include both regions. The numerical results have been qualitatively compared with experimental observations showing a good agreement and have allowed us to find the mechanical link between durotaxis, cell polarity and anisotropy.
Files in this item
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lectureALLENA, Rachele; AUBRY, Denis; SHARPE, James (Springer Verlag, 2013)Collective cell migration is a fundamental process that takes place during several biological phenomena such as embryogenesis, immunity response, and tumorogenesis, but the mechanisms that regulate it are still unclear. ...
-
Article dans une revue avec comité de lectureMONDESERT-DEVERAUX, Solenne; ALLENA, Rachele; AUBRY, Denis (Springer Verlag, 2019)Considering the major role of confined cell migration in biological processes and diseases, such as embryogenesis or metastatic cancer, it has become increasingly important to design relevant experimental set-ups for in ...
-
Article dans une revue avec comité de lectureDEVERAUX, Solenne; ALLENA, Rachele; AUBRY, Denis (Elsevier, 2017)Cell deformability is a necessary condition for a cell to be able to migrate, an ability that is vital both for healthy and diseased organisms. The nucleus being the largest and stiffest organelle, it often is a barrier ...
-
Article dans une revue avec comité de lectureMONDESERT-DEVERAUX, Solenne; ALLENA, Rachele; AUBRY, Denis (Tech Science Press, 2018)Cell migration is the cornerstone of many biological phenomena such as cancer metastasis, immune response or organogenesis. Adhesion-based motility is the most renown and examined motility mode, but in an adhesion-free ...
-
Article dans une revue avec comité de lectureFEDORCHAK, Gregory; MONDÉSERT-DEVERAUX, Solenne; BELL, Emily; ISERMANN, Philipp; AUBRY, Denis; ALLENA, Rachele; LAMMERDING, Jan (Royal Society of Chemistry, 2019)The mechanical properties of the cell nucleus are increasingly recognized as critical in many biological processes. The deformability of the nucleus determines the ability of immune and cancer cells to migrate through ...