Micro-mechanisms of fatigue in short glass fiber reinforced polyamide 66: A multi-scale experimental analysis
Conférence invitée
Date
2014Abstract
The objective of this work is to identify and to analyze the main micro-mechanisms which govern the fatigue behavior of a short glass fiber reinforced polyamide 66 composite through a multi-scale experimental analysis. Tension-tension fatigue tests have been performed at different applied maximum stress and have been analyzed at both microscopic and macroscopic scale. Together with the progressive stiffness reduction, the temperature rise due to self-heating during cyclic loading has been measured using an infrared camera. Moreover, SEM fractography observations have been performed to assess the chronology of deformation mechanisms. Two principal mechanisms have been identified: matrix deformation due to self-heating and fiber-matrix interface damage. In addition, localized deformation zones have been observed around the fibers. The evolution of the size of these micro-ductile areas have been statistically related to the maximum applied stress. Finally, a competition between thermal fatigue and mechanical fatigue have been shown according to the loading amplitude.
Files in this item
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lectureABDESSALEM, Abir; TAMBOURA, Sahbi; DALY, Hachmi Ben; TCHARKHTCHI, Abbas; FITOUSSI, Joseph; MERAGHNI, Fodil (Elsevier, 2021)This paper presents an investigation on the effects of hydrothermal aging on Sheet Molding Compound (SMC) composite. Two different techniques were carried out to study the inner structure of aged SMC composite. Firstly, ...
-
Article dans une revue avec comité de lectureABDESSALEM, Abir; TAMBOURA, Sahbi; FITOUSSI, Joseph; DALY, Hachmi Ben; TCHARKHTCHI, Abbas; MERAGHNI, Fodil (Elsevier, 2021)This paper presents an investigation on the effects of hydrothermal aging on Sheet Molding Compound (SMC) composite. Two different techniques were carried out to study the inner structure of aged SMC composite. Firstly, ...
-
Article dans une revue avec comité de lectureSHIRINBAYAN, Mohammadali; FITOUSSI, Joseph; BOCQUET, Michel; MERAGHNI, Fodil; SUROWIEC, Benjamin; TCHARKHTCHI, Abbas (Elsevier, 2017)This paper aims to present an experimental multi-scale analysis of quasi-static and high strain rate damage behavior of a new formulation of SMC composite (Advanced SMC). In order to study its capability to absorb energy ...
-
Article dans une revue avec comité de lectureSHIRINBAYAN, Mohammadali; FITOUSSI, Joseph; MERAGHNI, Fodil; SUROWIEC, Benjamin; LARIBI, M. A.; TCHARKHTCHI, Abbas (SAGE Publications, 2017)This paper presents the experimental results of tension-tension stress-controlled fatigue tests performed on advanced sheet molding compound (A-SMC). It aims at analyzing the effect of fiber orientation, loading amplitude, ...
-
Conférence invitéeSHIRINBAYAN, Mohammadali; SUROWIEC, Benjamin; BOCQUET, Michel; TCHARKHTCHI, Abbas; FITOUSSI, Joseph; MERAGHNI, Fodil (2015)Advanced Sheet Molding Compound (A-SMC) is a serious composite material candidate for structural automotive parts. It has a thermoset matrix and consists of high weight content of glass fibers (50% in mass) compared to ...