• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
  • View Item
  • Home
  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Investigation of ductility limits based on bifurcation theory coupled with continuum damage mechanics

Article dans une revue avec comité de lecture
Author
BOUKTIR, Yasser
211506 Ecole Polytechnique Algerie
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
CHALAL, Hocine
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
HADDAD, Moussa
96743 Laboratory of Structure Mechanics
ABED-MERAIM, Farid
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]

URI
http://hdl.handle.net/10985/10440
DOI
10.1016/j.matdes.2015.11.052
Date
2016
Journal
Materials and Design

Abstract

The ductility limits of an St14 steel are investigated using an elastic‒plastic‒damage model and bifurcation theory. An associative J2-flow theory of plasticity is coupled with damage within the framework of continuum damage mechanics. For strain localization prediction, the bifurcation analysis is adopted. Both the constitutive equations and the localization bifurcation criterion are implemented into the finite element code ABAQUS, within the framework of large strains and a fully three-dimensional formulation. The material parameters associated with the fully coupled elastic‒plastic‒damage model are calibrated based on experimental tensile tests together with an inverse identification procedure. The above-described approach allows the forming limit diagrams of the studied material to be determined, which are then compared with experimental measurements. A main conclusion of the current study is that the proposed approach is able to provide predictions that are in good agreement with experiments under the condition of accurate material parameter calibration. The latter requires a careful identification strategy based on both calibrated finite element simulations of tensile tests at large strains and appropriately selected necking measurements. The resulting approach represents a useful basis for setting up reliable ductility limit prediction tools as well as effective parameter identification strategies.

Files in this item

Name:
LEM3_MATERDESIGN_2015_BOUKTIR
Size:
1.413Mb
Format:
PDF
Embargoed until:
2017-11-08
View/Open

Collections

  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)

Related items

Showing items related by title, author, creator and subject.

  • On the implementation of the continuum shell finite element SHB8PS and application to sheet forming simulation 
    Article dans une revue avec comité de lecture
    SALAHOUELHADJ, Abdellah; ABED-MERAIM, Farid; CHALAL, Hocine; BALAN, Tudor (2011)
    In this contribution, the formulation of the SHB8PS continuum shell finite element is extended to anisotropic elastic-plastic behavior models with combined isotropic-kinematic hardening at large deformations. The resulting ...
  • Prediction of Springback After Draw‐Bending Test Using Different Material Models 
    Communication avec acte
    RACZ, Sever-Gabriel; KHAN, Salim; CHALAL, Hocine; ABED-MERAIM, Farid; BALAN, Tudor (Francisco Chinesta , Yvan Chastel and Mohamed El Mansori, 2011)
    Within the framework of sheet metal forming, the importance of hardening models for springback predictions has been often emphasized. While some specific applications require very accurate models, in many common situations ...
  • Efficient solid–shell finite elements for quasi-static and dynamic analyses and their application to sheet metal forming simulation 
    Article dans une revue avec comité de lecture
    WANG, Peng; CHALAL, Hocine; ABED-MERAIM, Farid (Trans Tech Publications, 2015)
    Thin structures are commonly designed and employedin engineering industries to save material, reduce weight and improve the overall performance of products. The finite element (FE) simulation of such thin structural ...
  • Prediction of strain localization during sheet metal forming using bifurcation analysis and Gurson-type damage 
    Communication avec acte
    MANSOURI, Lotfi; CHALAL, Hocine; ABED-MERAIM, Farid; BALAN, Tudor (E. Oñate, D.R.J. Owen, D. Peric and B. Suárez, 2011)
    The strain localization phenomenon that may occur during sheet metal forming represents a major cause of defective parts produced in the industry. Several instability criteria have been developed in the literature to predict ...
  • Hardening effects on strain localization predictions in porous ductile materials using the bifurcation approach 
    Article dans une revue avec comité de lecture
    CHALAL, Hocine; ABED-MERAIM, Farid (Elsevier, 2015)
    The localization of deformation into planar bands is often considered as the ultimate stage of strain prior to ductile fracture. In this study, ductility limits of metallic materials are predicted using the Gurson–Tverga ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales