A comparison between different methods for the numerical simulation of polycrystalline aggregates
Communication sans acte
Date
2016Abstract
The macroscopic behavior of polycrystalline materials is largely influenced by the shape, the arrangement and the orientation of crystallites. Different methods have thus been developed to determine the effective behavior of such materials as a function of their microstructural features. In this work, which focuses on polycrystalline materials with an elastic-viscoplastic behavior, the self-consistent (SC) method [1], the finite element (FE) method and the spectral (FFT) method [2] are compared. These common methods are used to determine the effective behavior of different 316L polycrystalline aggregates subjected to various loading conditions (uniaxial tension, cyclic tension/compression).(...)
Files in this item
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lectureThe macroscopic behavior of polycrystalline materials is largely influenced by the shape, the arrangement and the orientation of crystallites. Different methods have thus been developed to determine the effective behavior ...
-
Article dans une revue avec comité de lectureFFT-based homogenization methods aim at calculating the effective behavior of heterogeneous materials with periodic microstructures. These methods operate on a regular grid of voxels, and hence require an appropriate spatial ...
-
Article dans une revue avec comité de lectureHEYRAUD, Hugo; ROBERT, Camille; MAREAU, Charles; BELLETT, Daniel; MOREL, Franck; BELHOMME, Nicolas; DORE, Olivier (Elsevier BV, 2021-02-14)Weld toes and weld roots of continuously welded structures subjected to cyclic loading are critical zones in terms of the fatigue resistance. The finite element method coupled with a fatigue criterion is commonly used to ...
-
Article dans une revue avec comité de lectureSome parts of electrical machines are built from stacks of thin steel sheets, for which the coarse grain microstructure allows for minimizing magnetic losses. The fabrication process of these parts usually involves punching ...
-
Article dans une revue avec comité de lectureDEHMANI, Helmi; PALIN-LUC, Thierry; MAREAU, Charles; KOECHLIN, Samuel; BRUGGER, Charles (ESIS - Elsevier, 2016)Because of their improved magnetic properties, Fe-Si alloys are widely used for new electric motor generations. The use of punching process to obtain these components specially affects their mechanical behavior and fatigue ...