Thermo-mechanical characterization of the Ti17 titanium alloy under extreme loading conditions
Article dans une revue avec comité de lecture
Date
2016Journal
International Journal of Advanced Manufacturing TechnologyAbstract
Understanding the physics of chip formation in machining operations is often difficult due to the complexity of the phenomena involved, such as the extreme and complex loading conditions that occur in the cutting zone. In order to model the machining process, it is necessary to use a constitutive behavior law that is capable of reproducing as accurately as possible the behavior of the material under these extreme conditions. In this context, this paper presents a study of the mechanical behavior of the Ti17 titanium alloy at high strain rates and high temperatures. This has been achieved by undertaking compression and shear tests over a wide range of strain rates (from 10−1 s−1 to 100 s−1) and temperatures (from 25 to 800 ◦C). The results show that the Ti17 alloy is sensitive to strain rate, especially for strain rates greater than 1 s−1. In addition, the alloy retains good mechanical properties at high temperature (up to 500 ◦C). Based on the experimental results, the parameter of the Johnson-Cook constitutive equation have been identified using the inverse method. Some weaknesses in the model have been highlighted after the identification phase, especially in terms of the m and C parameters. A modification of the model has been proposed.
Files in this item
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lectureThis paper presents experimental results concerning the machinability of the titanium alloy Ti17 with and without high-pressure water jet assistance (HPWJA) using uncoated WC/Co tools. For this purpose, the influence of ...
-
Article dans une revue avec comité de lectureTitanium alloys are known for their excellent mechanical properties, especially at high temperature. But this specificity of titanium alloys can cause high cutting forces as well as a significant release of heat that may ...
-
Article dans une revue avec comité de lectureThis article presents the results of an experimental study on the Ti17 titanium alloy, which was carried out to analyze tool wear and the degradation mechanisms of an uncoated tungsten carbide tool insert. Two machining ...
-
Article dans une revue avec comité de lectureThe aim of this study is to develop a new numerical cutting model that includes fluid structure interaction and to take into account heat transfer between the water-jet, the workpiece and the chip. This has been achieved ...
-
Article dans une revue avec comité de lectureThe development of computation means has allowed the simulation of complex mechanical problems. The first simulations of manufacturing processes at the microstructure scale, namely in the field of machining, have recently ...