• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire Angevin de Mécanique, Procédés et InnovAtion (LAMPA)
  • View Item
  • Home
  • Laboratoire Angevin de Mécanique, Procédés et InnovAtion (LAMPA)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Degradation modes and tool wear mechanisms in finish and rough machining of Ti17 Titanium alloy under high-pressure water jet assistance

Article dans une revue avec comité de lecture
Author
ccAYED, Yessine
ccGERMAIN, Guénaël
206863 Laboratoire des Arts et Métiers ParisTech d'Angers - Procédés Matériaux Durabilité [LAMPA - PMD]
ccAMMAR, Amine
211916 Laboratoire Angevin de Mécanique, Procédés et InnovAtion [LAMPA]
FURET, Benoit
21439 Institut de Recherche en Communications et en Cybernétique de Nantes [IRCCyN]

URI
http://hdl.handle.net/10985/8608
DOI
10.1016/j.wear.2013.06.018
Date
2013
Journal
Wear

Abstract

This article presents the results of an experimental study on the Ti17 titanium alloy, which was carried out to analyze tool wear and the degradation mechanisms of an uncoated tungsten carbide tool insert. Two machining conditions, roughing and finishing, have been studied under different lubrication conditions. The experimental procedure included measurement of the cutting forces and the surface roughness. Different techniques have been used to explain the tool wear mechanisms. Distribution maps of the elemental composition of the titanium alloy and the tool inserts have been created using Energy Dispersive X-ray Spectroscopy (EDS). An area of material deposition on the tool rake face, characterized by a high titanium concentration has been observed. The width of this area and the concentration of titanium, decrease when increasing water jet pressure. The study shows that wear mechanisms, with and without high-pressure water jet assistance (HPWJA) are not the same. For example, for the roughing condition using conventional lubrication, the temperature in the cutting area becomes very high, this causes plastic deformation of the cutting edge which results in its rapid collapse. By contrast, this problem disappears when machining with HPWJA. In addition, the evolution of flank wear (VB) is stabilized with high-pressure lubrication. In this case, the most critical degradation mode is due to notch wear (VBn) leading to the sudden rupture of the cutting edge.

Files in this item

Name:
LAMPA_WEAR_AYED_2013.pdf
Size:
903.6Kb
Format:
PDF
View/Open

Collections

  • Laboratoire Angevin de Mécanique, Procédés et InnovAtion (LAMPA)

Related items

Showing items related by title, author, creator and subject.

  • Tool wear analysis and improvement of cutting conditions using the high-pressure water-jet assistance when machining the Ti17 titanium alloy 
    Article dans une revue avec comité de lecture
    ccAYED, Yessine; ccGERMAIN, Guénaël; ccAMMAR, Amine; FURET, Benoit (Elsevier, 2015)
    This paper presents experimental results concerning the machinability of the titanium alloy Ti17 with and without high-pressure water jet assistance (HPWJA) using uncoated WC/Co tools. For this purpose, the influence of ...
  • Thermo-mechanical characterization of the Ti17 titanium alloy under extreme loading conditions 
    Article dans une revue avec comité de lecture
    ccAYED, Yessine; ccGERMAIN, Guénaël; ccAMMAR, Amine; FURET, Benoit (Springer Verlag, 2016)
    Understanding the physics of chip formation in machining operations is often difficult due to the complexity of the phenomena involved, such as the extreme and complex loading conditions that occur in the cutting zone. In ...
  • Experimental Study of tool Wear Mechanisms in Conventional and High Pressure Coolant Assisted Machining of Titanium Alloy Ti17 
    Article dans une revue avec comité de lecture
    ccAYED, Yessine; ccGERMAIN, Guénaël; ccAMMAR, Amine; FURET, Benoit (Trans Tech Publications, 2013)
    Titanium alloys are known for their excellent mechanical properties, especially at high temperature. But this specificity of titanium alloys can cause high cutting forces as well as a significant release of heat that may ...
  • Development of a numerical model for the understanding of the chip formation in high-pressure water-jet assisted machining 
    Article dans une revue avec comité de lecture
    ccAYED, Yessine; ROBERT, Camille; ccGERMAIN, Guénaël; ccAMMAR, Amine (Elsevier, 2016)
    The aim of this study is to develop a new numerical cutting model that includes fluid structure interaction and to take into account heat transfer between the water-jet, the workpiece and the chip. This has been achieved ...
  • Orthogonal micro-cutting modeling of the Ti17 titanium alloy using the crystal plasticity theory 
    Article dans une revue avec comité de lecture
    ccAYED, Yessine; ROBERT, Camille; ccGERMAIN, Guénaël; ccAMMAR, Amine (2017)
    The development of computation means has allowed the simulation of complex mechanical problems. The first simulations of manufacturing processes at the microstructure scale, namely in the field of machining, have recently ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales