• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • View Item
  • Home
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Structure and Barrier Properties of Multinanolayered Biodegradable PLA/PBSA Films: Confinement Effect via Forced Assembly Coextrusion

Article dans une revue avec comité de lecture
Author
FOLLAIN, Nadège
141328 Polymères Biopolymères Surfaces [PBS]
GUINAULT, Alain
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
SOLLOGOUB, Cyrille
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
GAUCHER, Valérie
174496 Unité Matériaux et Transformations - UMR 8207 [UMET]
DELPOUVE, Nicolas
300318 Université de Rouen Normandie [UNIROUEN]
MARAIS, Stéphane
141328 Polymères Biopolymères Surfaces [PBS]
MESSIN, Tiphaine
141328 Polymères Biopolymères Surfaces [PBS]

URI
http://hdl.handle.net/10985/12375
DOI
10.1021/acsami.7b08404
Date
2017
Journal
ACS Applied Materials & Interfaces

Abstract

Multilayer coextrusion processing was applied to produce 2049-layer film of poly(butylene succinate-co-butylene adipate) (PBSA) confined against poly(lactic acid) (PLA) using forced assembly, where the PBSA layer thickness was about 60 nm. This unique technology allowed to process semicrystalline PBSA as confined polymer and amorphous PLA as confining polymer in a continuous manner. The continuity of PBSA layers within the 80/20 wt % PLA/PBSA layered films was clearly evidenced by atomic force microscopy (AFM). Similar thermal events to the reference films were revealed by thermal studies; indicating no diffusion of polymers during the melt-processing. Mechanical properties were measured for the multilayer film and the obtained results were those expected considering the fraction of each polymer, revealing the absence of delamination in the PLA/PBSA multinanolayer film. The confinement effect induced by PLA led to a slight orientation of the crystals, an increase of the rigid amorphous fraction (RAF) in PBSA with a densification of this fraction without changing film crystallinity. These structural changes allowed to strongly improve the water vapor and gas barrier properties of the PBSA layer into the multilayer film up to two decades in the case of CO2 gas. By confining the PBSA structure in very thin and continuous layers, it was then possible to improve the barrier performances of a biodegradable system and the resulting barrier properties were successfully correlated to the effect of confinement on the microstructure and the chain segment mobility of the amorphous phase. Such investigation on these multinanolayers of PLA/PBSA with the aim of evidencing relationships between microstructure implying RAF and barrier performances has never been performed yet. Besides, gas and water permeation results have shown that the barrier improvement obtained from the multilayer was mainly due to the reduction of solubility linked to the reduction of the free volume while the tortuosity effect, as usually expected, was not really observed. This work brings new insights in the field of physicochemical behaviors of new multilayer films made of biodegradable polyesters but also in interfacial processes due to the confinement effect induced in these multinanolayer structures obtained by the forced assembly coextrusion. This original coextrusion process was a very advantageous technique to produce eco-friendly materials with functional properties without the help of tie layer, additives, solvents, surface treatments, or inorganic fillers.

Files in this item

Name:
PIMM-AMI-MESSIN-2017.pdf
Size:
1.404Mb
Format:
PDF
View/Open

Collections

  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)

Related items

Showing items related by title, author, creator and subject.

  • Confinement effect in PC/MXD6 multilayer films: Impact of the microlayered structure on water and gas barrier properties 
    Article dans une revue avec comité de lecture
    MESSIN, Tiphaine; FOLLAIN, Nadège; GUINAULT, Alain; MIQUELARD-GARNIER, Guillaume; SOLLOGOUB, Cyrille; DELPOUVE, Nicolas; GAUCHER, Valérie; MARAIS, Stéphane (Elsevier, 2017)
    The transport properties were specifically investigated from water and gas permeation kinetics, and the corresponding permeation parameters were determined. The confinement effect of MXD6 in the multilayer structure was ...
  • Biodegradable PLA/PBS multinanolayer membrane with enhanced barrier performances 
    Article dans une revue avec comité de lecture
    MESSIN, Tiphaine; MARAIS, Stéphane; FOLLAIN, Nadège; GUINAULT, Alain; GAUCHER, Valérie; DELPOUVE, Nicolas; SOLLOGOUB, Cyrille (Elsevier, 2020)
    Polyester multilayer membranes with more than 2000 alternating layers of poly(lactic acid) (PLA) and poly(butylene succinate) (PBS) were successfully prepared via a nanolayer coextrusion process equipped with a multiplying-element ...
  • Impact of water and thermal induced crystallizations in a PC/MXD6 multilayer film on barrier properties 
    Article dans une revue avec comité de lecture
    MESSIN, Tiphaine; MARAIS, Stéphane; FOLLAIN, Nadège; CHAPPEY, Corinne; GUINAULT, Alain; MIQUELARD-GARNIER, Guillaume; DELPOUVE, Nicolas; GAUCHER, Valérie; SOLLOGOUB, Cyrille (Elsevier, 2019)
    A multilayer film composed of alternating layers of polycarbonate (PC) and poly(m-xylene adipamide) (MXD6) was elaborated by using an innovative multilayer coextrusion process. Quasi-continuous thin MXD6 layers (nanolayers) ...
  • Structural and Barrier Properties of Compatibilized PE/PA6 Multinanolayer Films 
    Article dans une revue avec comité de lecture
    LOZAY, Quentin; BEUGUEL, Quentin; FOLLAIN, Nadège; LEBRUN, Laurent; GUINAULT, Alain; MIQUELARD-GARNIER, Guillaume; TENCÉ-GIRAULT, Sylvie; SOLLOGOUB, Cyrille; DARGENT, Eric; MARAIS, Stéphane (MDPI, 2021)
    The barrier performance and structural lightening of organic materials are increasingly desired and constitute a major challenge for manufacturers, particularly for transport and packaging. A promising technique which tends ...
  • Gas barrier properties of polylactide/cellulose nanocrystals nanocomposites 
    Article dans une revue avec comité de lecture
    FARAJ, Hajar; FOLLAIN, Nadège; SOLLOGOUB, Cyrille; ALMEIDA, Giana; CHAPPEY, Corinne; MARAIS, Stéphane; TENCÉ-GIRAULT, Sylvie; GOUANVÉ, Fabrice; ESPUCHE, Eliane; DOMENEK, Sandra (Elsevier, 2022-07-01)
    The development of polylactide (PLA)/cellulose nanocrystals (CNC) nanocomposites in the aim to increase gas barrier properties has been widely studied, but gave rise to conflicting results. To better understand the underlying ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales