Gas barrier properties of polylactide/cellulose nanocrystals nanocomposites
Article dans une revue avec comité de lecture
Author
Date
2022-07-01Journal
Polymer TestingAbstract
The development of polylactide (PLA)/cellulose nanocrystals (CNC) nanocomposites in the aim to increase gas barrier properties has been widely studied, but gave rise to conflicting results. To better understand the underlying gas transport mechanisms, PLA/CNC nanocomposites were produced at concentrations between 5 and 50 wt%. The role of the PLA/CNC interface for the permeability was investigated using three different CNC surface grafts, namely lauric acid (slightly interacting with PLA), stearic acid (non-interacting with PLA), and poly glycidyl methacrylate bearing a reactive epoxy end-group (crosslinking with PLA). While PLA/CNC composites contained a large number of aggregates, homogenously dispersed nanocomposites were obtained with surface modified CNCs even at high concentration of CNC (up to 30 wt%). All nanocomposites had better O2 and CO2 barrier properties than PLA. Surprisingly, the nanocomposites prepared with surface grafted CNC did not perform better than the ones prepared with neat CNC. The diffusion coefficient was successfully modeled with Nielsen’s law, showing the importance of the shape factor and resulting tortuosity for the barrier performance
notwithstanding PLA/CNC surface compatibility. The analysis of the dual-mode O2 sorption isotherm showed the creation of a similar quantity of supplementary sorption sites in nanocomposites prepared with neat or lauric acid grafted CNC. PGMA grafts induced a higher number of sorption sites. The most important advantage of CNC surface grafts was the shielding of CNC against water vapor uptake. As a result, the O2 barrier properties could be maintained constant up to 90% relative humidity.
Files in this item
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lectureLOZAY, Quentin; BEUGUEL, Quentin; FOLLAIN, Nadège; LEBRUN, Laurent; GUINAULT, Alain; MIQUELARD-GARNIER, Guillaume; TENCÉ-GIRAULT, Sylvie; SOLLOGOUB, Cyrille; DARGENT, Eric; MARAIS, Stéphane (MDPI, 2021)The barrier performance and structural lightening of organic materials are increasingly desired and constitute a major challenge for manufacturers, particularly for transport and packaging. A promising technique which tends ...
-
Article dans une revue avec comité de lectureMESSIN, Tiphaine; MARAIS, Stéphane; FOLLAIN, Nadège; CHAPPEY, Corinne; GUINAULT, Alain; MIQUELARD-GARNIER, Guillaume; DELPOUVE, Nicolas; GAUCHER, Valérie; SOLLOGOUB, Cyrille (Elsevier, 2019)A multilayer film composed of alternating layers of polycarbonate (PC) and poly(m-xylene adipamide) (MXD6) was elaborated by using an innovative multilayer coextrusion process. Quasi-continuous thin MXD6 layers (nanolayers) ...
-
Article dans une revue avec comité de lectureFOLLAIN, Nadège; GUINAULT, Alain; SOLLOGOUB, Cyrille; GAUCHER, Valérie; DELPOUVE, Nicolas; MARAIS, Stéphane; MESSIN, Tiphaine (Washington, D.C. : American Chemical Society, 2017)Multilayer coextrusion processing was applied to produce 2049-layer film of poly(butylene succinate-co-butylene adipate) (PBSA) confined against poly(lactic acid) (PLA) using forced assembly, where the PBSA layer thickness ...
-
Article dans une revue avec comité de lectureMESSIN, Tiphaine; FOLLAIN, Nadège; GUINAULT, Alain; MIQUELARD-GARNIER, Guillaume; SOLLOGOUB, Cyrille; DELPOUVE, Nicolas; GAUCHER, Valérie; MARAIS, Stéphane (Elsevier, 2017)The transport properties were specifically investigated from water and gas permeation kinetics, and the corresponding permeation parameters were determined. The confinement effect of MXD6 in the multilayer structure was ...
-
Article dans une revue avec comité de lectureMESSIN, Tiphaine; MARAIS, Stéphane; FOLLAIN, Nadège; GUINAULT, Alain; GAUCHER, Valérie; DELPOUVE, Nicolas; SOLLOGOUB, Cyrille (Elsevier, 2020)Polyester multilayer membranes with more than 2000 alternating layers of poly(lactic acid) (PLA) and poly(butylene succinate) (PBS) were successfully prepared via a nanolayer coextrusion process equipped with a multiplying-element ...