• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)
  • View Item
  • Home
  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Lattice structure lightweight triangulation for additive manufacturing

Article dans une revue avec comité de lecture
Author
CHOUGRANI, Laurent
475262 Poly-Shape
ABED, Stéphane
475262 Poly-Shape
ccPERNOT, Jean-Philippe
543315 Laboratoire d’Ingénierie des Systèmes Physiques et Numériques [LISPEN]
ccVERON, Philippe

URI
http://hdl.handle.net/10985/14256
DOI
10.1016/j.cad.2017.05.016
Date
2017
Journal
Computer-Aided Design

Abstract

Additive manufacturing offers new available categories of geometries to be built. Among those categories, one can find the well developing field of lattice structures. Attention has been paid on lattice structures for their lightweight and mechanical efficiency ratio, thus leading to more optimized mechanical parts for systems. However this lightness only holds true from a mass related point of view. The files sent to additive manufacturing machines are quite large and can go up to such sizes that machines can freeze and get into malfunction. This is directly related to the lattice structures tendency to be of a high geometric complexity. a large amount of vertices and triangles is necessary to describe them geometrically, thus leading to larger file sizes. With the increasing use of lattice structures, the need for their files to be lighter is also rising. This paper aims at proposing a method for tessellating a certain category of such structures, using topologic and geometric criteria to generate as few as possible triangles, thus leading to lightweight files. The triangulation technique is driven by a chordal error that control the deviation between the exact and tessellated structures. It uses interpolation, boolean as well as triangulation operators. The method is illustrated and discussed through examples from our prototype software.

Files in this item

Name:
LISPEN_CAD_2017_CHOUGRANI.pdf
Size:
3.866Mb
Format:
PDF
View/Open

Collections

  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)

Related items

Showing items related by title, author, creator and subject.

  • Parts internal structure definition using lattice patterns optimization for mass reduction in additive manufacturing 
    Communication avec acte
    CHOUGRANI, Laurent; ABED, Stéphane; ccPERNOT, Jean-Philippe; ccVERON, Philippe (2016)
    With the rise of additive manufacturing, complex internal structure optimization is now a relevant topic. Additive manufacturing allows designers and engineers to go further in their modeling, designing and optimization ...
  • Parts internal structure definition using non-uniform patterned lattice optimization for mass reduction in additive manufacturing 
    Article dans une revue avec comité de lecture
    CHOUGRANI, Laurent; ABED, Stéphane; ccPERNOT, Jean-Philippe; ccVERON, Philippe (Springer Verlag, 2018)
    Today, being able to generate and produce shapes that fit mechanical and functional requirements and having as low as possible mass is crucial for aerospace and automotive applications. Besides, the rise of new additive ...
  • Parametric design of graded truss lattice structures for enhanced thermal dissipation 
    Article dans une revue avec comité de lecture
    VAISSIER, Benjamin; CHOUGRANI, Laurent; ccPERNOT, Jean-Philippe; ccVERON, Philippe (Elsevier, 2019)
    Truss lattice structures are intricate geometries, whose fabrication has recently been simplified by the development of Additive Manufacturing (AM) technologies. These lightweight geometries present great volume densities ...
  • Investigation on reducing geometry files size through floating points indexing 
    Communication avec acte
    VAISSIER, Benjamin; CHOUGRANI, Laurent; ccPERNOT, Jean-Philippe; ccVERON, Philippe (CAD Solutions, LLC, 2019)
    In a context of full cooperative data exchanges, frequent transfers between specialized software and remote design and manufacturing, fluidity is the key. It is thus important to reduce the size of data encoding files in ...
  • Genetic-algorithm based framework for lattice support structure optimization in additive manufacturing 
    Article dans une revue avec comité de lecture
    VAISSIER, Benjamin; CHOUGRANI, Laurent; ccPERNOT, Jean-Philippe; ccVERON, Philippe (Elsevier, 2019)
    The emergence and improvement of Additive Manufacturing technologies allow the fabrication of complex shapes so far inconceivable. However, to produce those intricate geometries, support structures are required. Besides ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales