• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)
  • View Item
  • Home
  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A priori evaluation of simulation models preparation processes using artificial intelligence techniques

Article dans une revue avec comité de lecture
Author
FINE, Lionel
88927 EADS Innovation Works [Toulouse]
107995 EADS Innovation Works [Suresnes] [EADS IW]
ccPERNOT, Jean-Philippe
543315 Laboratoire d’Ingénierie des Systèmes Physiques et Numériques [LISPEN]
ccDANGLADE, Florence
ccVERON, Philippe

URI
http://hdl.handle.net/10985/14315
DOI
10.1016/j.compind.2017.06.001
Date
2017
Journal
Computers in Industry

Abstract

Controlling the well-known triptych costs, quality and time during the different phases of the Product Development Process (PDP) is an everlasting challenge for the industry. Among the numerous issues that are to be addressed, the development of new methods and tools to adapt to the various needs the models used all along the PDP is certainly one of the most challenging and promising improvement area. This is particularly true for the adaptation of Computer-Aided Design (CAD) models to Computer-Aided Engineering (CAE) applications, and notably during the CAD models simplification steps. Today, even if methods and tools exist, such a preparation phase still requires a deep knowledge and a huge amount of time when considering Digital Mock-Up (DMU) composed of several hundreds of thousands of parts. Thus, being able to estimate a priori the impact of DMU adaptation scenarios on the simulation results would help identifying the best scenario right from the beginning. This paper addresses such a difficult problem and uses artificial intelligence (AI) techniques to learn and accurately predict behaviours from carefully selected examples. The main idea is to identify rules from these examples used as inputs of learning algorithms. Once those rules obtained, they can be used on a new case to a priori estimate the impact of a preparation process without having to perform it. To reach this objective, a method to build a representative database of examples has been developed, the right input (explanatory) and output (preparation process quality criteria) variables have been identified, then the learning model and its associated control parameters have been tuned. One challenge was to identify explanatory variables from geometrical key characteristics and data characterizing the preparation processes. A second challenge was to build a effective learning model despite a limited number of examples. The rules linking the output variables to the input ones are obtained using AI techniques such as well-known neural networks and decision trees. The proposed approach is illustrated and validated on industrial examples in the context of computational fluid dynamics simulations.

Files in this item

Name:
LISPEN_CII_2017_VERON.pdf
Size:
1.419Mb
Format:
PDF
View/Open

Collections

  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)

Related items

Showing items related by title, author, creator and subject.

  • Estimation of CAD model simplification impact on CFD analysis using machine learning techniques 
    Communication avec acte
    FINE, Lionel; ccPERNOT, Jean-Philippe; ccDANGLADE, Florence; ccVERON, Philippe (2015)
    This paper adresses the way machine learning techniques based on neural networks can be used to predict the impact of simplification processes on CAD model for heat transfer FEA purposes.
  • Identification of explanatory variables for DMU preparation process evaluation by using machine learning techniques 
    Communication avec acte
    FINE, Lionel; ccPERNOT, Jean-Philippe; ccDANGLADE, Florence; ccVERON, Philippe (2016)
    Being able to estimate a priori the impact of DMU preparation scenarios for a dedicated activity would help identifying the best scenario from the beginning. Machine learning techniques are a means to a priori evaluate a ...
  • Prediction of CAD model defeaturing impact on heat transfer FEA results using machine learning techniques 
    Communication avec acte
    FINE, Lionel; ccPERNOT, Jean-Philippe; ccDANGLADE, Florence; ccVERON, Philippe (2014)
    Essential when adapting CAD model for finite element analysis, the defeaturing ensures the feasibility of the simulation and reduces the computation time. Processes for CAD model preparation and defeaturing tools exist but ...
  • On the use of Machine Learning to Defeature CAD Models for Simulation 
    Article dans une revue avec comité de lecture
    ccPERNOT, Jean-Philippe; ccDANGLADE, Florence; ccVERON, Philippe (CAD Solutions LLC (imprimé) and Taylor & Francis Online (en ligne), 2013)
    Numerical simulations play more and more important role in product development cycles and are increasingly complex, realistic and varied. CAD models must be adapted to each simulation case to ensure the quality and reliability ...
  • Synthetic Data Generation for Surface Defect Detection 
    Communication avec acte
    LEBERT, Déborah; ccPLOUZEAU, Jeremy; FARRUGIA, Jean-Philippe; ccDANGLADE, Florence; ccMERIENNE, Frédéric (Springer Nature Switzerland, 2022-08-28)
    Ensuring continued quality is challenging, especially when customer satisfaction is the provided service. It seems to become easier with new technologies like Artificial Intelligence. However, field data are necessary to ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales