• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)
  • View Item
  • Home
  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Identification of explanatory variables for DMU preparation process evaluation by using machine learning techniques

Communication avec acte
Author
FINE, Lionel
88927 EADS Innovation Works [Toulouse]
107995 EADS Innovation Works [Suresnes] [EADS IW]
ccPERNOT, Jean-Philippe
543315 Laboratoire d’Ingénierie des Systèmes Physiques et Numériques [LISPEN]
ccDANGLADE, Florence
ccVERON, Philippe

URI
http://hdl.handle.net/10985/17018
Date
2016

Abstract

Being able to estimate a priori the impact of DMU preparation scenarios for a dedicated activity would help identifying the best scenario from the beginning. Machine learning techniques are a means to a priori evaluate a DMU preparation process without to perform it by predicting its criteria of evaluation. For that, a representative database of examples must be developed that contains the right explanative and output variables. However, the key explanative variables are not clearly identified. This paper proposes a method for the selection of the most significant explanatory variables among all the database variables. In addition to using these variables for learning, this will allow to formalize the knowledge.

Files in this item

Name:
LISPEN_VC_2016_PERNOT.pdf
Size:
640.6Kb
Format:
PDF
View/Open

Collections

  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)

Related items

Showing items related by title, author, creator and subject.

  • Estimation of CAD model simplification impact on CFD analysis using machine learning techniques 
    Communication avec acte
    FINE, Lionel; ccPERNOT, Jean-Philippe; ccDANGLADE, Florence; ccVERON, Philippe (2015)
    This paper adresses the way machine learning techniques based on neural networks can be used to predict the impact of simplification processes on CAD model for heat transfer FEA purposes.
  • A priori evaluation of simulation models preparation processes using artificial intelligence techniques 
    Article dans une revue avec comité de lecture
    FINE, Lionel; ccPERNOT, Jean-Philippe; ccDANGLADE, Florence; ccVERON, Philippe (Elsevier, 2017)
    Controlling the well-known triptych costs, quality and time during the different phases of the Product Development Process (PDP) is an everlasting challenge for the industry. Among the numerous issues that are to be ...
  • Prediction of CAD model defeaturing impact on heat transfer FEA results using machine learning techniques 
    Communication avec acte
    FINE, Lionel; ccPERNOT, Jean-Philippe; ccDANGLADE, Florence; ccVERON, Philippe (2014)
    Essential when adapting CAD model for finite element analysis, the defeaturing ensures the feasibility of the simulation and reduces the computation time. Processes for CAD model preparation and defeaturing tools exist but ...
  • On the use of Machine Learning to Defeature CAD Models for Simulation 
    Article dans une revue avec comité de lecture
    ccPERNOT, Jean-Philippe; ccDANGLADE, Florence; ccVERON, Philippe (CAD Solutions LLC (imprimé) and Taylor & Francis Online (en ligne), 2013)
    Numerical simulations play more and more important role in product development cycles and are increasingly complex, realistic and varied. CAD models must be adapted to each simulation case to ensure the quality and reliability ...
  • Synthetic Data Generation for Surface Defect Detection 
    Communication avec acte
    LEBERT, Déborah; ccPLOUZEAU, Jeremy; FARRUGIA, Jean-Philippe; ccDANGLADE, Florence; ccMERIENNE, Frédéric (Springer Nature Switzerland, 2022-08-28)
    Ensuring continued quality is challenging, especially when customer satisfaction is the provided service. It seems to become easier with new technologies like Artificial Intelligence. However, field data are necessary to ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales