Computational Homogenization of Architectured Materials
Chapitre d'ouvrage scientifique
Résumé
Architectured materials involve geometrically engineered distributions of microstructural phases at a scale comparable to the scale of the component, thus calling for new models in order to determine the effective properties of materials. The present chapter aims at providing such models, in the case of mechanical properties. As a matter of fact, one engineering challenge is to predict the effective properties of such materials; computational homogenization using finite element analysis is a powerful tool to do so. Homogenized behavior of architectured materials can thus be used in large structural computations, hence enabling the dissemination of architectured materials in the industry. Furthermore, computational homogenization is the basis for computational topology optimization which will give rise to the next generation of architectured materials. This chapter covers the computational homogenization of periodic architectured materials in elasticity and plasticity, as well as the homogenization and representativity of random architectured materials.
Fichier(s) constituant cette publication
- Nom:
- PIMM-Archimats-2019-Dirrenberg ...
- Taille:
- 1.523Mo
- Format:
- Fin d'embargo:
- 2019-09-30
Cette publication figure dans le(s) laboratoire(s) suivant(s)
Documents liés
Visualiser des documents liés par titre, auteur, créateur et sujet.
-
Article dans une revue avec comité de lectureDIRRENBERGER, Justin; FOREST, Samuel; JEULIN, Dominique (Elsevier, 2014)The size of representative volume element (RVE) for 3D stochastic fibrous media is investigated. A statistical RVE size determination method is applied to a specific model of random microstructure: Poisson fibers. The ...
-
Article dans une revue avec comité de lectureWANG, Zhen-Pei; POH, Leong Hien; DIRRENBERGER, Justin; ZHU, Yilin; FOREST, Samuel (Elsevier, 2017)An important feature that drives the auxetic behaviour of the star-shaped auxetic structures is the hinge-functional connection at the vertex connections. This feature poses a great challenge for manufacturing and may lead ...
-
Article dans une revue avec comité de lectureWANG, Zhen-Pei; POH, Leong Hien; ZHU, Yilin; DIRRENBERGER, Justin; FOREST, Samuel (Elsevier, 2019)This paper focuses on a systematic isogeometric design approach for the optimal petal form and size characterization of tetra-petals auxetics, considering both plane stress and plane strain conditions. The underlying ...
-
Article dans une revue avec comité de lectureVIARD, Antoine-Emmanuel; DIRRENBERGER, Justin; FOREST, Samuel (Elsevier, 2020)Under tension low carbon steel exhibits inhomogeneous plastic deformation. This instability called Piobert-Lüders banding creates fronts of localized strain that propagate in the structure. To date, Lüders banding has been ...
-
Scalar-based strain gradient plasticity theory to model size-dependent kinematic hardening effects Article dans une revue avec comité de lectureA common belief in phenomenological strain gradient plasticity modeling is that including the gradient of scalar variables in the constitutive setting leads to size-dependent isotropic hardening, whereas the gradient of ...