• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • Voir le document
  • Accueil de SAM
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Computational Homogenization of Architectured Materials

Chapitre d'ouvrage scientifique
Auteur
DIRRENBERGER, Justin
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
FOREST, Samuel
1157 Centre des Matériaux [MAT]
JEULIN, Dominique
206 Centre de Morphologie Mathématique [CMM]
1157 Centre des Matériaux [MAT]

URI
http://hdl.handle.net/10985/14978
DOI
10.1007/978-3-030-11942-3_4
Date
2019

Résumé

Architectured materials involve geometrically engineered distributions of microstructural phases at a scale comparable to the scale of the component, thus calling for new models in order to determine the effective properties of materials. The present chapter aims at providing such models, in the case of mechanical properties. As a matter of fact, one engineering challenge is to predict the effective properties of such materials; computational homogenization using finite element analysis is a powerful tool to do so. Homogenized behavior of architectured materials can thus be used in large structural computations, hence enabling the dissemination of architectured materials in the industry. Furthermore, computational homogenization is the basis for computational topology optimization which will give rise to the next generation of architectured materials. This chapter covers the computational homogenization of periodic architectured materials in elasticity and plasticity, as well as the homogenization and representativity of random architectured materials.

Fichier(s) constituant cette publication

Nom:
PIMM-Archimats-2019-Dirrenberg ...
Taille:
1.523Mo
Format:
PDF
Fin d'embargo:
2019-09-30
Voir/Ouvrir

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • Towards gigantic RVE sizes for 3D stochastic fibrous networks 
    Article dans une revue avec comité de lecture
    DIRRENBERGER, Justin; FOREST, Samuel; JEULIN, Dominique (Elsevier, 2014)
    The size of representative volume element (RVE) for 3D stochastic fibrous media is investigated. A statistical RVE size determination method is applied to a specific model of random microstructure: Poisson fibers. The ...
  • Isogeometric shape optimization of smoothed petal auxetic structures via computational periodic homogenization 
    Article dans une revue avec comité de lecture
    WANG, Zhen-Pei; POH, Leong Hien; DIRRENBERGER, Justin; ZHU, Yilin; FOREST, Samuel (Elsevier, 2017)
    An important feature that drives the auxetic behaviour of the star-shaped auxetic structures is the hinge-functional connection at the vertex connections. This feature poses a great challenge for manufacturing and may lead ...
  • Systematic design of tetra-petals auxetic structures with stiffness constraint 
    Article dans une revue avec comité de lecture
    WANG, Zhen-Pei; POH, Leong Hien; ZHU, Yilin; DIRRENBERGER, Justin; FOREST, Samuel (Elsevier, 2019)
    This paper focuses on a systematic isogeometric design approach for the optimal petal form and size characterization of tetra-petals auxetics, considering both plane stress and plane strain conditions. The underlying ...
  • Propagating material instabilities in planar architectured materials 
    Article dans une revue avec comité de lecture
    VIARD, Antoine-Emmanuel; DIRRENBERGER, Justin; FOREST, Samuel (Elsevier, 2020)
    Under tension low carbon steel exhibits inhomogeneous plastic deformation. This instability called Piobert-Lüders banding creates fronts of localized strain that propagate in the structure. To date, Lüders banding has been ...
  • Scalar-based strain gradient plasticity theory to model size-dependent kinematic hardening effects 
    Article dans une revue avec comité de lecture
    FOREST, Samuel; ccJEBAHI, Mohamed (Springer Verlag, 2021)
    A common belief in phenomenological strain gradient plasticity modeling is that including the gradient of scalar variables in the constitutive setting leads to size-dependent isotropic hardening, whereas the gradient of ...

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales