• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Institut de Recherche de l’École navale (IRENAV)
  • View Item
  • Home
  • Institut de Recherche de l’École navale (IRENAV)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Graph Signals Classification Using Total Variation and Graph Energy Informations

Communication avec acte
Author
BAY-AHMED, Hadj-Ahmed
13094 Institut de Recherche de l'Ecole Navale [IRENAV]
DARE-EMZIVAT, Delphine
13094 Institut de Recherche de l'Ecole Navale [IRENAV]
ccBOUDRAA, Abdel-Ouahab
13094 Institut de Recherche de l'Ecole Navale [IRENAV]

URI
http://hdl.handle.net/10985/15078
DOI
10.1109/GlobalSIP.2017.8309043
Date
2017

Abstract

In this work, we consider the problem of graph signals classification. We investigate the relevance of two attributes, namely the total variation (TV) and the graph energy (GE) for graph signals classification. The TV is a compact and informative attribute for efficient graph discrimination. The GE information is used to quantify the complexity of the graph structure which is a pertinent information. Based on these two attributes, three similarity measures are introduced. Key of these measures is their low complexity. The effectiveness of these similarity measures are illustrated on five data sets and the results compared to those of five kernel-based methods of the literature. We report results on computation runtime and classification accuracy on graph benchmark data sets. The obtained results confirm the effectiveness of the proposed methods in terms of CPU runtime and of classification accuracy. These findings also show the potential of TV and GE informations for graph signals classification.

Files in this item

Name:
IRENAV_GLOBALSIP_2017_BAYAHMED.pdf
Size:
470.4Kb
Format:
PDF
View/Open

Collections

  • Institut de Recherche de l’École navale (IRENAV)

Related items

Showing items related by title, author, creator and subject.

  • On signal denoising by EMD in the frequency domain 
    Communication avec acte
    BAY-AHMED, Hadj-Ahmed; KOMATY, Ali; DARE-EMZIVAT, Delphine; ccBOUDRAA, Abdel-Ouahab (2015)
    In this work a new denoising scheme based on the empirical mode decomposition associated with a frequency analysis is introduced. Compared to classical approaches where the extracted modes are thresholded in time domain, ...
  • A Joint Spectral Similarity Measure for Graphs Classification 
    Article dans une revue avec comité de lecture
    BAY-AHMED, Hadj-Ahmed; ccBOUDRAA, Abdel-Ouahab; DARE-EMZIVAT, Delphine (Elsevier, 2019)
    In spite of the simple linear relationship between the adjacency A and the Laplacian L matrices, L=D-A where D is the degrees matrix, these matrices seem to reveal informations about the graph in different ways, where it ...
  • Classification des Signaux sur Graphes par Mesures Spectrales Algébriques 
    Communication avec acte
    BAY-AHMED, Hadj-Ahmed; ccBOUDRAA, Abdel-Ouahab; DARE-EMZIVAT, Delphine; PREAUX, Yves (2017)
    La notion de mesure de similarité est très importante dans de nombreux domaines tels que l’apprentissage statistique, la fouille de données ou les sciences cognitives. Dans cet article, nous nous intéressons à la similarité ...
  • Analyse de la vulnérabilité d’un réseau via la mesure de l’entropie de Von Neumann. 
    Communication avec acte
    BAY-AHMED, Hadj-Ahmed; DARE-EMZIVAT, Delphine; ccBOUDRAA, Abdel-Ouahab (GRETSI, 2019-09)
    In this work, we present a new strategy for measuring the vulnerability of network connections, modeled by a graph, via the variations of the Von Neumann entropy of the density matrix associated to this graph, this one ...
  • Détection d’épilepsie dans les signaux EEG par graphe de visibilité et un noyau de SVM adapté 
    Communication avec acte
    AVERTY, Tristan; DARE-EMZIVAT, Delphine; ccBOUDRAA, Abdel-Ouahab (GRETSI, 2022-09)
    Dans cet article, nous présentons une stratégie de détection d’épilepsie à partir de signaux EEG (issus d’un seul capteur) basée sur l’algorithme de visibilité, qui consiste à transformer une série temporelle en un graphe ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales