• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Dynamique des Fluides (DynFluid)
  • Voir le document
  • Accueil de SAM
  • Dynamique des Fluides (DynFluid)
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Efficient Uncertainty Quantification of Turbulent Flows through Supersonic ORC Nozzle Blades

Article dans une revue avec comité de lecture
Auteur
BUFI, Elio Antonio
134975 Laboratoire de Dynamique des Fluides [DynFluid]
CINNELLA, Paola
134975 Laboratoire de Dynamique des Fluides [DynFluid]

URI
http://hdl.handle.net/10985/15316
DOI
10.1016/j.egypro.2015.12.018
Date
2015
Journal
Energy Procedia

Résumé

This work aims at assessing different Uncertainty Quantification (UQ) methodologies for the stochastic analysis and robust design of Organic Rankine Cycle (ORC) turbines under multiple uncertainties. Precisely, we investigate the capability of several state-of-the art UQ methods to efficiently and accurately compute the average and standard deviation of the aerodynamic performance of supersonic ORC turbine expanders, whose geometry is preliminarily designed by means of a generalized Method Of Characteristics (MOC). Stochastic solutions provided by the adaptive Simplex Stochastic Collocation method, a Kriging-based response surface method, and a second-order accurate Method of Moments are compared to a reference solution obtained by running a full-factorial Probabilistic Collocation Method (PCM). The computational cost required to estimate the average adiabatic efficiency, Mach number and pressure coefficient, as well as their standard deviations, to within a given tolerance level is compared, and conclusions are drawn about the more suitable method for the robust design of ORC turbines.

Fichier(s) constituant cette publication

Nom:
DynFluid-EP-2015-BUFI.pdf
Taille:
806.8Ko
Format:
PDF
Voir/Ouvrir

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Dynamique des Fluides (DynFluid)

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • Sensitivity of Supersonic ORC Turbine Injector Designs to Fluctuating Operating Conditions 
    Communication avec acte
    BUFI, Elio Antonio; CINNELLA, Paola; MERLE, Xavier; CINNELLA, Paola (ASME, 2015)
    The design of an efficient organic rankine cycle (ORC) expander needs to take properly into account strong real gas effects that may occur in given ranges of operating conditions, which can also be highly variable. In this ...
  • Toward improved simulation tools for compressible turbomachinery: assessment of RBC schemes for the transonic NASA Rotor 37 benchmark case 
    Communication avec acte
    CINNELLA, Paola; MICHEL, Bruno (2013)
    Residual-based-compact schemes (RBC) of 2nd and 3rd-order accuracy are applied to a challenging 3D ow through a transonic compressor. The proposed schemes provide almost mesh-converged solutions in good agreement with ...
  • Toward improved simulation tools for compressible turbomachinery: assessment of Residual-Based Compact schemes for the transonic compressor NASA Rotor 37 
    Article dans une revue avec comité de lecture
    CINNELLA, Paola; MICHEL, Bruno (Taylor & Francis, 2014)
    Residual-based-compact schemes (RBC) of 2nd and 3rd-order accuracy are applied to a challenging 3D ow through a transonic compressor. The proposed schemes provide almost mesh-converged solutions in good agreement with ...
  • Simplex-stochastic collocation method with improved scalability 
    Article dans une revue avec comité de lecture
    EDELING, Wouter Nico; DWIGHT, Richard P.; CINNELLA, Paola (Elsevier, 2016)
    The Simplex-Stochastic Collocation (SSC) method is a robust tool used to propagate uncertain input distributions through a computer code. However, it becomes prohibitively expensive for problems with dimensions higher than ...
  • Robust prediction of dense gas flows under uncertain thermodynamic models 
    Article dans une revue avec comité de lecture
    MERLE, Xavier; CINNELLA, Paola (Elsevier, 2019)
    A Bayesian approach is developed to quantify uncertainties associated with the thermodynamic models used for the simulation of dense gas flows, i.e. flows of gases characterized by complex molecules of moderate to high ...

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales