• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Dynamique des Fluides (DynFluid)
  • View Item
  • Home
  • Dynamique des Fluides (DynFluid)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Simplex-stochastic collocation method with improved scalability

Article dans une revue avec comité de lecture
Author
EDELING, Wouter Nico
134975 Laboratoire de Dynamique des Fluides [DynFluid]
333368 Delft University of Technology [TU Delft]
DWIGHT, Richard P.
333368 Delft University of Technology [TU Delft]
CINNELLA, Paola
134975 Laboratoire de Dynamique des Fluides [DynFluid]

URI
http://hdl.handle.net/10985/15517
DOI
10.1016/j.jcp.2015.12.034
Date
2016
Journal
Journal of Computational Physics

Abstract

The Simplex-Stochastic Collocation (SSC) method is a robust tool used to propagate uncertain input distributions through a computer code. However, it becomes prohibitively expensive for problems with dimensions higher than 5. The main purpose of this paper is to identify bottlenecks, and to improve upon this bad scalability. In order to do so, we propose an alternative interpolation stencil technique based upon the Set-Covering problem, and we integrate the SSC method in the High-Dimensional Model-Reduction framework. In addition, we address the issue of ill-conditioned sample matrices, and we present an analytical map to facilitate uniformly-distributed simplex sampling.

Files in this item

Name:
DynFluid_JCP_2016_EDELING.pdf
Size:
5.981Mb
Format:
PDF
View/Open

Collections

  • Dynamique des Fluides (DynFluid)

Related items

Showing items related by title, author, creator and subject.

  • Bayesian estimates of parameter variability in the k − ε turbulence model 
    Article dans une revue avec comité de lecture
    EDELING, Wouter Nico; CINNELLA, Paola; DWIGHT, Richard P.; BIJL, H. (Elsevier, 2014)
    In this paper we are concerned with obtaining estimates for the error in Reynolds-Averaged Navier-Stokes (RANS) simulations based on the Launder-Sharma k−ε turbulence closure model, for a limited class of flows. In particular ...
  • Estimation of Model Error Using Bayesian Model-Scenario Averaging with Maximum a Posterori-Estimates 
    Ouvrage scientifique
    SCHMELZER, Martin; DWIGHT, Richard P.; EDELING, Wouter Nico; CINNELLA, Paola (Springer International Publishing, 2019-07)
  • Bayesian Predictions of Reynolds-Averaged Navier–Stokes Uncertainties Using Maximum a Posteriori Estimates 
    Article dans une revue avec comité de lecture
    CINNELLA, Paola; SCHMELZER, Martin; EDELING, Wouter Nico (American Institute of Aeronautics and Astronautics, 2018)
    Computational fluid dynamics analyses of high-Reynolds-number flows mostly rely on the Reynolds-averaged Navier–Stokes equations. The associated closure models are based on multiple simplifying assumptions and involve ...
  • Data-Free and Data-Driven RANS Predictions with Quantified Uncertainty 
    Article dans une revue avec comité de lecture
    EDELING, Wouter Nico; IACCARINO, Gianluca; CINNELLA, Paola (Springer Verlag (Germany), 2017)
    For the purpose of estimating the epistemic model-form uncertainty in Reynolds-Averaged Navier-Stokes closures, we propose two transport equations to locally perturb the Reynolds stress tensor of a given baseline eddy-viscosity ...
  • Data-Driven Deterministic Symbolic Regression of Nonlinear Stress-Strain Relation for RANS Turbulence Modelling 
    Communication avec acte
    SCHMELZER, Martin; DWIGHT, Richard P.; CINNELLA, Paola (American Institute of Aeronautics and Astronautics, 2018)
    This work presents developments towards a deterministic symbolic regression method to derive algebraic Reynolds-stress models for the Reynolds-Averaged Navier-Stokes (RANS) equations. The models are written as tensor ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales