• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Dynamique des Fluides (DynFluid)
  • View Item
  • Home
  • Dynamique des Fluides (DynFluid)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Bayesian Predictions of Reynolds-Averaged Navier–Stokes Uncertainties Using Maximum a Posteriori Estimates

Article dans une revue avec comité de lecture
Author
CINNELLA, Paola
134975 Laboratoire de Dynamique des Fluides [DynFluid]
SCHMELZER, Martin
EDELING, Wouter Nico

URI
http://hdl.handle.net/10985/15497
DOI
10.2514/1.J056287
Date
2018
Journal
AIAA Journal

Abstract

Computational fluid dynamics analyses of high-Reynolds-number flows mostly rely on the Reynolds-averaged Navier–Stokes equations. The associated closure models are based on multiple simplifying assumptions and involve numerous empirical closure coefficients, which are calibrated on a set of simple reference flows. Predicting new flows using a single closure model with nominal values for the closure coefficients may lead to biased predictions. Bayesian model-scenario averaging is a statistical technique providing an optimal way to combine the predictions of several competing models calibrated on various sets of data (scenarios). The method allows a stochastic estimate of a quantity of interest in an unmeasured prediction scenario to be obtain by 1) propagating posterior probability distributions of the parameters obtained for multiple calibration scenarios, and 2) computing a weighted posterior predictive distribution. Although step 2 has a negligible computational cost, step 1 requires a large number of samples of the solver. To enable the application of the proposed approach to computationally expensive flow configurations, a modified formulation is used where a maximum posterior probability approximation is used to drastically reduce the computational burden. The predictive capability of the proposed simplified approach is assessed for two-dimensional separated and three-dimensional compressible flows.

Files in this item

Name:
DynFluid-AIAAJ-2017-Wouter.pdf
Size:
1.482Mb
Format:
PDF
View/Open

Collections

  • Dynamique des Fluides (DynFluid)

Related items

Showing items related by title, author, creator and subject.

  • Estimation of Model Error Using Bayesian Model-Scenario Averaging with Maximum a Posterori-Estimates 
    Ouvrage scientifique
    SCHMELZER, Martin; DWIGHT, Richard P.; EDELING, Wouter Nico; CINNELLA, Paola (Springer International Publishing, 2019-07)
  • Bayesian estimates of parameter variability in the k − ε turbulence model 
    Article dans une revue avec comité de lecture
    EDELING, Wouter Nico; CINNELLA, Paola; DWIGHT, Richard P.; BIJL, H. (Elsevier, 2014)
    In this paper we are concerned with obtaining estimates for the error in Reynolds-Averaged Navier-Stokes (RANS) simulations based on the Launder-Sharma k−ε turbulence closure model, for a limited class of flows. In particular ...
  • Simplex-stochastic collocation method with improved scalability 
    Article dans une revue avec comité de lecture
    EDELING, Wouter Nico; DWIGHT, Richard P.; CINNELLA, Paola (Elsevier, 2016)
    The Simplex-Stochastic Collocation (SSC) method is a robust tool used to propagate uncertain input distributions through a computer code. However, it becomes prohibitively expensive for problems with dimensions higher than ...
  • Data-Free and Data-Driven RANS Predictions with Quantified Uncertainty 
    Article dans une revue avec comité de lecture
    EDELING, Wouter Nico; IACCARINO, Gianluca; CINNELLA, Paola (Springer Verlag (Germany), 2017)
    For the purpose of estimating the epistemic model-form uncertainty in Reynolds-Averaged Navier-Stokes closures, we propose two transport equations to locally perturb the Reynolds stress tensor of a given baseline eddy-viscosity ...
  • CFD-driven symbolic identification of algebraic Reynolds-stress models 
    Article dans une revue avec comité de lecture
    ccBEN HASSAN SAIDI, Ismaïl; ccSCHMELZER, Martin; ccCINNELLA, Paola; GRASSO, Francesco (Elsevier Inc., 2022-02)
    Reynolds-stress models (EARSM) from high-fidelity data is developed building on the frozen-training SpaRTA algorithm of [1]. Corrections for the Reynolds stress tensor and the production of transported turbulent quantities ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales