• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Dynamique des Fluides (DynFluid)
  • View Item
  • Home
  • Dynamique des Fluides (DynFluid)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Data-Free and Data-Driven RANS Predictions with Quantified Uncertainty

Article dans une revue avec comité de lecture
Author
EDELING, Wouter Nico
333368 Delft University of Technology [TU Delft]
134975 Laboratoire de Dynamique des Fluides [DynFluid]
IACCARINO, Gianluca
CINNELLA, Paola
134975 Laboratoire de Dynamique des Fluides [DynFluid]

URI
http://hdl.handle.net/10985/15564
DOI
10.1007/s10494-017-9870-6
Date
2017
Journal
Flow, Turbulence and Combustion

Abstract

For the purpose of estimating the epistemic model-form uncertainty in Reynolds-Averaged Navier-Stokes closures, we propose two transport equations to locally perturb the Reynolds stress tensor of a given baseline eddy-viscosity model. The spatial structure of the perturbations is determined by the proposed transport equations, and thus does not have to be inferred from full-field reference data. Depending on a small number of model parameters and the local flow conditions, a ’return to eddy viscosity’ is described, and the underlying baseline state can be recovered. In order to make predictions with quantified uncertainty, we identify two separate methods, i.e. a data-free and data-driven approach. In the former no reference data is required and computationally inexpensive intervals are computed. When reference data is available, Bayesian inference can be applied to obtained informed distributions of the model parameters and simulation output.

Files in this item

Name:
DynFluid-FTC-2017-EDELING.pdf
Size:
3.034Mb
Format:
PDF
View/Open

Collections

  • Dynamique des Fluides (DynFluid)

Related items

Showing items related by title, author, creator and subject.

  • Bayesian estimates of parameter variability in the k − ε turbulence model 
    Article dans une revue avec comité de lecture
    EDELING, Wouter Nico; CINNELLA, Paola; DWIGHT, Richard P.; BIJL, H. (Elsevier, 2014)
    In this paper we are concerned with obtaining estimates for the error in Reynolds-Averaged Navier-Stokes (RANS) simulations based on the Launder-Sharma k−ε turbulence closure model, for a limited class of flows. In particular ...
  • Estimation of Model Error Using Bayesian Model-Scenario Averaging with Maximum a Posterori-Estimates 
    Ouvrage scientifique
    SCHMELZER, Martin; DWIGHT, Richard P.; EDELING, Wouter Nico; CINNELLA, Paola (Springer International Publishing, 2019-07)
  • Simplex-stochastic collocation method with improved scalability 
    Article dans une revue avec comité de lecture
    EDELING, Wouter Nico; DWIGHT, Richard P.; CINNELLA, Paola (Elsevier, 2016)
    The Simplex-Stochastic Collocation (SSC) method is a robust tool used to propagate uncertain input distributions through a computer code. However, it becomes prohibitively expensive for problems with dimensions higher than ...
  • Bayesian Predictions of Reynolds-Averaged Navier–Stokes Uncertainties Using Maximum a Posteriori Estimates 
    Article dans une revue avec comité de lecture
    CINNELLA, Paola; SCHMELZER, Martin; EDELING, Wouter Nico (American Institute of Aeronautics and Astronautics, 2018)
    Computational fluid dynamics analyses of high-Reynolds-number flows mostly rely on the Reynolds-averaged Navier–Stokes equations. The associated closure models are based on multiple simplifying assumptions and involve ...
  • Sensitivity of Supersonic ORC Turbine Injector Designs to Fluctuating Operating Conditions 
    Communication avec acte
    BUFI, Elio Antonio; CINNELLA, Paola; MERLE, Xavier; CINNELLA, Paola (ASME, 2015)
    The design of an efficient organic rankine cycle (ORC) expander needs to take properly into account strong real gas effects that may occur in given ranges of operating conditions, which can also be highly variable. In this ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales