Data-Free and Data-Driven RANS Predictions with Quantified Uncertainty
Article dans une revue avec comité de lecture
Date
2017Journal
Flow, Turbulence and CombustionAbstract
For the purpose of estimating the epistemic model-form uncertainty in Reynolds-Averaged Navier-Stokes closures, we propose two transport equations to locally perturb the Reynolds stress tensor of a given baseline eddy-viscosity model. The spatial structure of the perturbations is determined by the proposed transport equations, and thus does not have to be inferred from full-field reference data. Depending on a small number of model parameters and the local flow conditions, a ’return to eddy viscosity’ is described, and the underlying baseline state can be recovered. In order to make predictions with quantified uncertainty, we identify two separate methods, i.e. a data-free and data-driven approach. In the former no reference data is required and computationally inexpensive intervals are computed. When reference data is available, Bayesian inference can be applied to obtained informed distributions of the model parameters and simulation output.
Files in this item
Collections
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lectureEDELING, Wouter Nico; CINNELLA, Paola; DWIGHT, Richard P.; BIJL, H. (Elsevier, 2014)In this paper we are concerned with obtaining estimates for the error in Reynolds-Averaged Navier-Stokes (RANS) simulations based on the Launder-Sharma k−ε turbulence closure model, for a limited class of flows. In particular ...
-
Estimation of Model Error Using Bayesian Model-Scenario Averaging with Maximum a Posterori-Estimates Ouvrage scientifiqueSCHMELZER, Martin; DWIGHT, Richard P.; EDELING, Wouter Nico; CINNELLA, Paola (Springer International Publishing, 2019-07)
-
Article dans une revue avec comité de lectureEDELING, Wouter Nico; DWIGHT, Richard P.; CINNELLA, Paola (Elsevier, 2016)The Simplex-Stochastic Collocation (SSC) method is a robust tool used to propagate uncertain input distributions through a computer code. However, it becomes prohibitively expensive for problems with dimensions higher than ...
-
Article dans une revue avec comité de lectureCINNELLA, Paola; SCHMELZER, Martin; EDELING, Wouter Nico (American Institute of Aeronautics and Astronautics, 2018)Computational fluid dynamics analyses of high-Reynolds-number flows mostly rely on the Reynolds-averaged Navier–Stokes equations. The associated closure models are based on multiple simplifying assumptions and involve ...
-
Communication avec acteBUFI, Elio Antonio; CINNELLA, Paola; MERLE, Xavier; CINNELLA, Paola (ASME, 2015)The design of an efficient organic rankine cycle (ORC) expander needs to take properly into account strong real gas effects that may occur in given ranges of operating conditions, which can also be highly variable. In this ...