• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Dynamique des Fluides (DynFluid)
  • View Item
  • Home
  • Dynamique des Fluides (DynFluid)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Quantification of model uncertainty in RANS simulations: A review

Article dans une revue avec comité de lecture
Author
XIAO, Heng
47147 Virginia Tech [Blacksburg]
CINNELLA, Paola
134975 Laboratoire de Dynamique des Fluides [DynFluid]

URI
http://hdl.handle.net/10985/15519
DOI
10.1016/j.paerosci.2018.10.001
Date
2019
Journal
Progress in Aerospace Sciences

Abstract

In computational fluid dynamics simulations of industrial flows, models based on the Reynolds-averaged Navier–Stokes (RANS) equations are expected to play an important role in decades to come. However, model uncertainties are still a major obstacle for the predictive capability of RANS simulations. This review examines both the parametric and structural uncertainties in turbulence models. We review recent literature on data-free (uncertainty propagation) and data-driven (statistical inference) approaches for quantifying and reducing model uncertainties in RANS simulations. Moreover, the fundamentals of uncertainty propagation and Bayesian inference are introduced in the context of RANS model uncertainty quantification. Finally, the literature on uncertainties in scale-resolving simulations is briefly reviewed with particular emphasis on large eddy simulations.

Files in this item

Name:
DynFluid_PAS_2019_XIAO.pdf
Size:
15.68Mb
Format:
PDF
Embargoed until:
2020-02-01
View/Open

Collections

  • Dynamique des Fluides (DynFluid)

Related items

Showing items related by title, author, creator and subject.

  • Optimization of cavitating flows simulation with data driven approach: from data assimilation to machine learning 
    Communication avec acte
    ZHANG, Xinlei; GOMEZ, Thomas; XIAO, HENG; ccCOUTIER-DELGOSHA, Olivier (ASME Press, 2018)
    This paper investigates the application of data-driven approach to the optimization of cavitating flow simulations. An evaluation of the performance of commonly used RANS models (k-e, k-w and k-w SST) is presented by ...
  • Sensitivity of Supersonic ORC Turbine Injector Designs to Fluctuating Operating Conditions 
    Communication avec acte
    BUFI, Elio Antonio; CINNELLA, Paola; MERLE, Xavier; CINNELLA, Paola (ASME, 2015)
    The design of an efficient organic rankine cycle (ORC) expander needs to take properly into account strong real gas effects that may occur in given ranges of operating conditions, which can also be highly variable. In this ...
  • Multi-fidelity optimization strategy for the industrial aerodynamic design of helicopter rotor blades 
    Article dans une revue avec comité de lecture
    LEUSINK, Debbie; ALFANO, David; CINNELLA, Paola (Elsevier, 2015)
    The industrial aerodynamic design of helicopter rotor blades needs to consider the two typical flight conditions of hover and forward flight simultaneously. Here, this multi-objective design problem is tackled by using a ...
  • Numerical Study of Multistage Transcritical Organic Rankine Cycle Axial Turbines 
    Article dans une revue avec comité de lecture
    CINNELLA, Paola; ccSCIACOVELLI, Luca (American Society of Mechanical Engineers, 2014)
    Transonic flows through axial, multi-stage, transcritical ORC turbines, are investigated by using a numerical solver including advanced multiparameter equations of state and a high-order discretization scheme. The working ...
  • Bayesian quantification of thermodynamic uncertainties in dense gas flows 
    Article dans une revue avec comité de lecture
    MERLE, Xavier; CINNELLA, Paola (Elsevier, 2015)
    A Bayesian inference methodology is developed for calibrating complex equations of state used in numerical fluid flow solvers. Precisely, the input parameters of three equations of state commonly used for modeling the ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales