Data-Driven Deterministic Symbolic Regression of Nonlinear Stress-Strain Relation for RANS Turbulence Modelling
Communication avec acte
Résumé
This work presents developments towards a deterministic symbolic regression method to derive algebraic Reynolds-stress models for the Reynolds-Averaged Navier-Stokes (RANS) equations. The models are written as tensor polynomials, for which optimal coe cients are found using Bayesian inversion. These coe cient fields are the targets for the symbolic regression. A method is presented based on a regularisation strategy in order to promote sparsity of the inferred models and is applied to high-fidelity data. By being data-driven the method reduces the assumptions commonly made in the process of model development in order to increase the predictive fidelity of algebraic models.
Fichier(s) constituant cette publication
Cette publication figure dans le(s) laboratoire(s) suivant(s)
Documents liés
Visualiser des documents liés par titre, auteur, créateur et sujet.
-
Estimation of Model Error Using Bayesian Model-Scenario Averaging with Maximum a Posterori-Estimates Ouvrage scientifiqueSCHMELZER, Martin; DWIGHT, Richard P.; EDELING, Wouter Nico; CINNELLA, Paola (Springer International Publishing, 2019-07)
-
Article dans une revue avec comité de lectureEDELING, Wouter Nico; CINNELLA, Paola; DWIGHT, Richard P.; BIJL, H. (Elsevier, 2014)In this paper we are concerned with obtaining estimates for the error in Reynolds-Averaged Navier-Stokes (RANS) simulations based on the Launder-Sharma k−ε turbulence closure model, for a limited class of flows. In particular ...
-
Article dans une revue avec comité de lectureEDELING, Wouter Nico; DWIGHT, Richard P.; CINNELLA, Paola (Elsevier, 2016)The Simplex-Stochastic Collocation (SSC) method is a robust tool used to propagate uncertain input distributions through a computer code. However, it becomes prohibitively expensive for problems with dimensions higher than ...
-
Article dans une revue avec comité de lectureBEN HASSAN SAIDI, Ismaïl; SCHMELZER, Martin; CINNELLA, Paola; GRASSO, Francesco (Elsevier Inc., 2022-02)Reynolds-stress models (EARSM) from high-fidelity data is developed building on the frozen-training SpaRTA algorithm of [1]. Corrections for the Reynolds stress tensor and the production of transported turbulent quantities ...
-
Article dans une revue avec comité de lectureCINNELLA, Paola; SCHMELZER, Martin; EDELING, Wouter Nico (American Institute of Aeronautics and Astronautics, 2018)Computational fluid dynamics analyses of high-Reynolds-number flows mostly rely on the Reynolds-averaged Navier–Stokes equations. The associated closure models are based on multiple simplifying assumptions and involve ...