• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Institut de Biomécanique Humaine Georges Charpak (IBHGC)
  • Voir le document
  • Accueil de SAM
  • Institut de Biomécanique Humaine Georges Charpak (IBHGC)
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Lumbar spine posterior corner detection in X-rays using Haar-based features

Communication avec acte
Auteur
EBRAHIMI, Shahin
ccSKALLI, Wafa
99538 Laboratoire de biomécanique [LBM]
ANGELINI, Elsa D.
300362 Télécom ParisTech
ccGAJNY, Laurent
466360 Institut de Biomecanique Humaine Georges Charpak

URI
http://hdl.handle.net/10985/15787
DOI
10.1109/ISBI.2016.7493239
Date
2016

Résumé

3D reconstruction of the spine using biplanar X-rays remains approximate and requires human-machine interactions to adjust the position of important features such as vertebral corners and endplates. The purpose of this study is to develop a method to extract automatically the accurate position of lumbar vertebrae posterior corners. In the proposed method we select corner point candidates from an initial edge map. A dedicated pipeline is designed to discard unwanted candidates, involving polyline simplification, curvature thresholding and multiscale Haar filtering. Ultimately, we use a priori knowledge derived from an initial 3D spine model to define search areas and select the final corner points. The framework was tested on 21 biplanar X-rays from scoliotic children. Corner positions are compared with manual selections by two experts. The results report a localization accuracy between 0.7 and 1.6 mm, comparable to manual expert variability.

Fichier(s) constituant cette publication

Nom:
IBHGC_ISBI_2016_EBRAHIMI.pdf
Taille:
685.1Ko
Format:
PDF
Voir/Ouvrir

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Institut de Biomécanique Humaine Georges Charpak (IBHGC)

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • Automatic Segmentation and Identification of Spinous Processes on Sagittal X-Rays Based on Random Forest Classification and Dedicated Contextual Features 
    Communication avec acte
    EBRAHIMI, Shahin; ccSKALLI, Wafa; ANGELINI, Elsa D.; ccGAJNY, Laurent (IEEE, 2019)
    X-ray based quantitative analysis of spine parameters is required in routine diagnosis or treatment planning. Existing tools commonly require manual intervention. Attempts towards automation of the whole procedure have ...
  • Vertebral rotation estimation from frontal X-rays using a quasi-automated pedicle detection method 
    Article dans une revue avec comité de lecture
    EBRAHIMI, Shahin; ccSKALLI, Wafa; ANGELINI, Elsa D.; ccGAJNY, Laurent; ccVERGARI, Claudio (Springer Verlag, 2019)
    Purpose Measurement of vertebral axial rotation (VAR) is relevant for the assessment of scoliosis. Stokes method allows estimating VAR in frontal X-rays from the relative position of the pedicles and the vertebral body. ...
  • Vertebral corners detection on sagittal X-rays based on shape modelling, random forest classifiers and dedicated visual features 
    Article dans une revue avec comité de lecture
    EBRAHIMI, Shahin; ccSKALLI, Wafa; ANGELINI, Elsa D.; ccGAJNY, Laurent (Taylor & Francis, 2018)
    Quantitative measurements of spine shape parameters on planar X-ray images is critical for clinical applications but remains tedious and with no fully-automated solution demonstrated on the whole spine. This study aims to ...
  • Quasi-automatic 3D reconstruction of the full spine from low-dose biplanar X-rays based on statistical inferences and image analysis 
    Article dans une revue avec comité de lecture
    EBRAHIMI, Shahin; ccSKALLI, Wafa; ANGELINI, Elsa D.; ccGAJNY, Laurent; ccVERGARI, Claudio (Springer Verlag, 2018)
    Purpose: To design a quasi-automated three-dimensional reconstruction method of the spine from biplanar X-rays as the daily used method in clinical routine is based on manual adjustments of a trained operator and the ...
  • Automated Spinal Midline Delineation on Biplanar X-Rays Using Mask R-CNN 
    Communication avec acte
    YANG, Zixin; ccSKALLI, Wafa; ccGAJNY, Laurent; ANGELINI, Elsa D.; ccVERGARI, Claudio (Springer International Publishing, 2019)
    Manually annotating medical images with few landmarks to initialize 3D shape models is a common practice. For instance, when reconstructing the 3D spine from biplanar X-rays, the spinal midline, passing through vertebrae ...

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales