• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Institut de Biomécanique Humaine Georges Charpak (IBHGC)
  • View Item
  • Home
  • Institut de Biomécanique Humaine Georges Charpak (IBHGC)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Vertebral rotation estimation from frontal X-rays using a quasi-automated pedicle detection method

Article dans une revue avec comité de lecture
Author
EBRAHIMI, Shahin
ccSKALLI, Wafa
ANGELINI, Elsa D.
484335 Laboratoire Traitement et Communication de l'Information [LTCI]
ccGAJNY, Laurent
1001017 Institut de Biomécanique Humaine Georges Charpak [IBHGC]
ccVERGARI, Claudio

URI
http://hdl.handle.net/10985/18317
DOI
10.1007/s00586-019-06158-z
Date
2019
Journal
European Spine Journal

Abstract

Purpose Measurement of vertebral axial rotation (VAR) is relevant for the assessment of scoliosis. Stokes method allows estimating VAR in frontal X-rays from the relative position of the pedicles and the vertebral body. This method requires identifying these landmarks for each vertebral level, which is time-consuming. In this work, a quasi-automated method for pedicle detection and VAR estimation was proposed. Method A total of 149 healthy and adolescent idiopathic scoliotic (AIS) subjects were included in this retrospective study. Their frontal X-rays were collected from multiple sites and manually annotated to identify the spinal midline and pedicle positions. Then, an automated pedicle detector was developed based on image analysis, machine learning and fast manual identification of a few landmarks. VARs were calculated using the Stokes method in a validation dataset of 11 healthy (age 6–33 years) and 46 AIS subjects (age 6–16 years, Cobb 10°–46°), both from detected pedicles and those manually annotated to compare them. Sensitivity of pedicle location to the manual inputs was quantified on 20 scoliotic subjects, using 10 perturbed versions of the manual inputs. Results Pedicles centers were localized with a precision of 84% and mean difference of 1.2 ± 1.2 mm, when comparing with manual identification. Comparison of VAR values between automated and manual pedicle localization yielded a signed difference of − 0.2 ± 3.4°. The uncertainty on pedicle location was smaller than 2 mm along each image axis. Conclusion The proposed method allowed calculating VAR values in frontal radiographs with minimal user intervention and robust quasi-automated pedicle localization.

Files in this item

Name:
IBHGC_ESJ_2019_EBRAHIMI.pdf
Size:
1.818Mb
Format:
PDF
Description:
Article
View/Open

Collections

  • Institut de Biomécanique Humaine Georges Charpak (IBHGC)

Related items

Showing items related by title, author, creator and subject.

  • Quasi-automatic 3D reconstruction of the full spine from low-dose biplanar X-rays based on statistical inferences and image analysis 
    Article dans une revue avec comité de lecture
    EBRAHIMI, Shahin; ccSKALLI, Wafa; ANGELINI, Elsa D.; ccGAJNY, Laurent; ccVERGARI, Claudio (Springer Verlag, 2018)
    Purpose: To design a quasi-automated three-dimensional reconstruction method of the spine from biplanar X-rays as the daily used method in clinical routine is based on manual adjustments of a trained operator and the ...
  • Automatic Segmentation and Identification of Spinous Processes on Sagittal X-Rays Based on Random Forest Classification and Dedicated Contextual Features 
    Communication avec acte
    EBRAHIMI, Shahin; ccSKALLI, Wafa; ANGELINI, Elsa D.; ccGAJNY, Laurent (IEEE, 2019)
    X-ray based quantitative analysis of spine parameters is required in routine diagnosis or treatment planning. Existing tools commonly require manual intervention. Attempts towards automation of the whole procedure have ...
  • Vertebral corners detection on sagittal X-rays based on shape modelling, random forest classifiers and dedicated visual features 
    Article dans une revue avec comité de lecture
    EBRAHIMI, Shahin; ccSKALLI, Wafa; ANGELINI, Elsa D.; ccGAJNY, Laurent (Taylor & Francis, 2018)
    Quantitative measurements of spine shape parameters on planar X-ray images is critical for clinical applications but remains tedious and with no fully-automated solution demonstrated on the whole spine. This study aims to ...
  • Lumbar spine posterior corner detection in X-rays using Haar-based features 
    Communication avec acte
    EBRAHIMI, Shahin; ccSKALLI, Wafa; ANGELINI, Elsa D.; ccGAJNY, Laurent (IEEE, 2016)
    3D reconstruction of the spine using biplanar X-rays remains approximate and requires human-machine interactions to adjust the position of important features such as vertebral corners and endplates. The purpose of this ...
  • Automated Spinal Midline Delineation on Biplanar X-Rays Using Mask R-CNN 
    Communication avec acte
    YANG, Zixin; ccSKALLI, Wafa; ccGAJNY, Laurent; ANGELINI, Elsa D.; ccVERGARI, Claudio (Springer International Publishing, 2019)
    Manually annotating medical images with few landmarks to initialize 3D shape models is a common practice. For instance, when reconstructing the 3D spine from biplanar X-rays, the spinal midline, passing through vertebrae ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales