• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Institut de Biomécanique Humaine Georges Charpak (IBHGC)
  • View Item
  • Home
  • Institut de Biomécanique Humaine Georges Charpak (IBHGC)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Simulating the Remodelling of Bone around Implants

Communication sans acte
Author
FRAME, Jamie C.
CORTÉ, Laurent
1157 Centre des Matériaux [MAT]
2073 Laboratoire Matière Molle et Chimie [MMC]
ALLENA, Rachele
99538 Laboratoire de biomécanique [LBM]
ccROHAN, Pierre-Yves
466360 Institut de Biomecanique Humaine Georges Charpak

URI
http://hdl.handle.net/10985/15997
Date
2017

Abstract

Introduction Improper osseointegration of implants leading to poor mechanical anchoring or embrittlement of neighboring bone is a major concern in orthopedic surgery [1?]. This integration is known to depend on the complex interplay between the mechanical environment and the cell activity in the tissues surrounding the implant. In order to accurately predict the success of an implant a robust description of the remodeling behavior of bone is required. Building upon previous research modeling osteogenesis around implants [2] a mechano-biological Finite Element (FE) model is proposed to describe the remodeling processes involved when bone, cartilage and fibrous tissue are submitted to mechanical loads. Method In this work, we describe the mechanostat (the interrelationship between loading conditions and remodeling) of bone [1] by modelling the net effect of cellular activities at the tissue level. For that, we distinguish the immature tissues resulting from the early proliferation steps (growth and diffusion) from the mature tissues obtained after a consolidation of the extra-cellular matrix (mineralization for bone). In each elementary volume element, the creation of new (immature) tissue is dependent upon the level of applied strain and is described by a reaction-diffusion equation. Results Using these equations a simple cantilever cyclic bending simulation was created and loaded to recreate a range of physiological strains experienced during bone remodeling. Preliminary results for bone tissue only are presented in Figure 1. This shows the cantilever boundary conditions and maximum normalized shear strain distribution which produce the evolution of immature and mature bone tissues over time. As the Young’s modulus increases proportionately with the increase in mature tissue density the strain under constant loading conditions is observed to reduce, therefore altering the generation of new tissue types. The model proposed here may offer numerous perspectives as a predictive tool for implant design or for the new therapies against bone resorption.

Files in this item

Name:
IBHGC_ESB_2018_FRAME.pdf
Size:
516.4Kb
Format:
PDF
View/Open

Collections

  • Institut de Biomécanique Humaine Georges Charpak (IBHGC)

Related items

Showing items related by title, author, creator and subject.

  • A mechano-biological model of multi-tissue evolution in bone 
    Article dans une revue avec comité de lecture
    FRAME, Jamie C.; CORTÉ, Laurent; ALLENA, Rachele; ccROHAN, Pierre-Yves (Springer Verlag, 2019)
    Successfully simulating tissue evolution in bone is of significant importance in predicting various biological processes such as bone remodeling, fracture healing and osseointegration of implants. Each of these processes ...
  • Optimal bone structure is dependent on the interplay between mechanics and cellular activities 
    Article dans une revue avec comité de lecture
    FRAME, Jamie C.; CORTÉ, Laurent; ALLENA, Rachele; ccROHAN, Pierre-Yves (Elsevier, 2018)
    Bone is a tissue with the remarkable capacity to adapt its structure to an optimized microstructural form depending on variations in the loading conditions. The remodeling process in bone produces distinct tissue distributions ...
  • Functional evaluation of anterior cruciate ligagment autografts in pre-clinical animal models 
    Communication sans acte
    ccSKALLI, Wafa; TRNKA, Julien; MANASSERO, Mathieu; VIATEAU, Véronique; CAROUX, Julien; CORTÉ, Laurent; ccROHAN, Pierre-Yves; ccPILLET, Helene (2017)
    Introduction Rupture of the Anterior Cruciate Ligament (ACL) affects about 1 person over 3000 every year. The current standard care is based on ligament reconstruction by autograft from tendon tissues and is considered as ...
  • A wear model to predict damage of reconstructed ACL 
    Article dans une revue avec comité de lecture
    MAEZTU REDIN, Deyo; CAROUX, Julien; ccROHAN, Pierre-Yves; ccPILLET, Helene; CERMOLACCE, Alexia; TRNKA, Julien; MANASSERO, Mathieu; VIATEAU, Véronique; CORTÉ, Laurent (Elsevier BV, 2022-09)
    Impingement with surrounding tissues is a major cause of failure of anterior cruciate ligament reconstruction. However, the complexity of the knee kinematics and anatomical variations make it difficult to predict the ...
  • Digital twinning of Cellular Capsule Technology: Emerging outcomes from the perspective of porous media mechanics 
    Article dans une revue avec comité de lecture
    URCUN, Stéphane; ccSKALLI, Wafa; NASSOY, Pierre; BORDAS, Stéphane Pierre Alain; SCIUMÈ, Giuseppe; ccROHAN, Pierre-Yves (Public Library of Science (PLoS), 2021)
    Spheroids encapsulated within alginate capsules are emerging as suitable in vitro tools to investigate the impact of mechanical forces on tumor growth since the internal tumor pressure can be retrieved from the deformation ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales