Aspect ratio effects in Rayleigh-Bénard convection of Herschel-Bulkley fluids
Article dans une revue avec comité de lecture
Date
2017Journal
Engineering ComputationsRésumé
Purpose The purpose of this paper is to analyze two-dimensional steady-state Rayleigh–Bénard convection within rectangular enclosures in different aspect ratios filled with yield stress fluids obeying the Herschel–Bulkley model. Design/methodology/approach In this study, a numerical method based on the finite element has been developed for analyzing two-dimensional natural convection of a Herschel–Bulkley fluid. The effects of Bingham number Bn and power law index n on heat and momentum transport have been investigated for a nominal Rayleigh number range (5 × 10^3 < Ra < 10^5), three different aspect ratios (ratio of enclosure length:height AR = 1, 2, 3) and a single representative value of nominal Prandtl number (Pr = 10). Findings Results show that the mean Nusselt number Nu¯ increases with increasing Rayleigh number due to strengthening of convective transport. However, with the same nominal value of Ra, the values of Nu¯ for shear thinning fluids n < 1 are greater than shear thickening fluids n > 1. The values of Nu¯ decrease with Bingham number and for large values of Bn, Nu¯ rapidly approaches unity, which indicates that heat transfer takes place principally by thermal conduction. The effects of aspect ratios have also been investigated and results show that Nu¯ increases with increasing AR due to stronger convection effects. Originality/value This paper presents a numerical study of Rayleigh–Bérnard flows involving Herschel–Bulkley fluids for a wide range of Rayleigh numbers, Bingham numbers and power law index based on finite element method. The effects of aspect ratio on flow and heat transfer of Herschel–Bulkley fluids are also studied.
Fichier(s) constituant cette publication
Cette publication figure dans le(s) laboratoire(s) suivant(s)
Documents liés
Visualiser des documents liés par titre, auteur, créateur et sujet.
-
Article dans une revue avec comité de lectureThis study investigates the double-diffusive natural convection of the non-Newtonian Casson fluid in a square cavity based on the original viscoplastic stress model without simplification. Therefore, yield stress plays an ...
-
Article dans une revue avec comité de lectureAGHIGHI, Mohammad Saeid; AMMAR, Amine; METIVIER, Christel; NORMANDIN, Magdeleine; CHINESTA SORIA, Francisco (Elsevier, 2013)This paper focuses on the non-incremental solution of transient coupled non-linear models, in particular the one related to the Rayleigh–Bénard flow problem that models natural thermal convection. For this purpose we are ...
-
Article dans une revue avec comité de lectureAGHIGHI, Mohammad Saeid; AMMAR, Amine; METIVIER, Christel; CHINESTA SORIA, Francisco (Emerald, 2015)Purpose – The purpose of this paper is to focus on the advanced solution of the parametric non-linear model related to the Rayleigh-Benard laminar flow involved in the modeling of natural thermal convection. This flow is ...
-
Article dans une revue avec comité de lectureThis study aims at investigating numerically the Rayleigh-Bénard Convection (RBC) in viscoplastic fluids. A Casson fluid is considered in a bidimensional square cavity heated from below. The effects of the dimensionless ...
-
Article dans une revue avec comité de lecture.The objective of this paper is to clarify the role of sloping walls on convective heat transport in Rayleigh–Bénard convection within a trapezoidal enclosure filled with viscoplastic fluid. The rheology of the viscoplastic ...