• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)
  • Voir le document
  • Accueil de SAM
  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Parametric design of graded truss lattice structures for enhanced thermal dissipation

Type
Articles dans des revues avec comité de lecture
Auteur
VAISSIER, Benjamin
543315 Laboratoire d’Ingénierie des Systèmes Physiques et Numériques [LISPEN]
PERNOT, Jean-Philippe
58355 École Nationale Supérieure des Arts et Métiers [ENSAM]
543315 Laboratoire d’Ingénierie des Systèmes Physiques et Numériques [LISPEN]
CHOUGRANI, Laurent
475262 Poly-Shape
543315 Laboratoire d’Ingénierie des Systèmes Physiques et Numériques [LISPEN]
VERON, Philippe
543315 Laboratoire d’Ingénierie des Systèmes Physiques et Numériques [LISPEN]

URI
http://hdl.handle.net/10985/16741
Date
2019
Journal
Computer-Aided Design

Résumé

Truss lattice structures are intricate geometries, whose fabrication has recently been simplified by the development of Additive Manufacturing (AM) technologies. These lightweight geometries present great volume densities and surface-to-occupancy ratios, which makes them ideal for thermal dissipation applications. This paper introduces a new framework for the parametric design of graded truss lattice structures that maximize passive cooling. It exploits the results of a semi-analytic formulation and analysis of the volume density and surface-to-occupancy ratio of state-of-the-art unit cells. In particular, it comes out that any truss lattice structure presents an optimal beam diameter over unit cell size ratio that maximizes its surface-to-occupancy value. This value and the ratio for which it is reached are identified and compared for the most common unit cells. The unit cell with the maximal surface-to-occupancy ratio is then identified, along with its set of optimal parameters, taking into account additive manufacturing constraints. The validation of this optimal geometry is performed by populating pre-defined design spaces of both academic and industrial case studies. An orientation strategy and a parametric gradation approach are also proposed to further optimize the generated heat sinks and maximize passive cooling. These results are very helpful to support decision making during the parametric design of a heat sink and to identify, a priori, the optimal unit cell, its control parameters, its orientation and its gradation strategy. The generated geometries are compared with traditional heat sink structures through static heat dissipation simulations, in order to demonstrate their interest.

Fichier(s) constituant cette publication

Nom:
LISPEN_CAD_2019_PERNOT.pdf
Taille:
3.044Mo
Format:
PDF
Fin d'embargo:
2020-10-01
Voir/Ouvrir

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • Investigation on reducing geometry files size through floating points indexing 
    VAISSIER, Benjamin; PERNOT, Jean-Philippe; CHOUGRANI, Laurent; VERON, Philippe (CAD Solutions, LLC, 2019)
    In a context of full cooperative data exchanges, frequent transfers between specialized software and remote design and manufacturing, fluidity is the key. It is thus important to reduce the size of data encoding files in ...
  • Genetic-algorithm based framework for lattice support structure optimization in additive manufacturing 
    VAISSIER, Benjamin; PERNOT, Jean-Philippe; CHOUGRANI, Laurent; VERON, Philippe (Elsevier, 2019)
    The emergence and improvement of Additive Manufacturing technologies allow the fabrication of complex shapes so far inconceivable. However, to produce those intricate geometries, support structures are required. Besides ...
  • Parts internal structure definition using lattice patterns optimization for mass reduction in additive manufacturing 
    CHOUGRANI, Laurent; VERON, Philippe; PERNOT, Jean-Philippe; ABED, Stéphane (2016)
    With the rise of additive manufacturing, complex internal structure optimization is now a relevant topic. Additive manufacturing allows designers and engineers to go further in their modeling, designing and optimization ...
  • Lattice structure lightweight triangulation for additive manufacturing 
    CHOUGRANI, Laurent; PERNOT, Jean-Philippe; VERON, Philippe; ABED, Stéphane (2017)
    Additive manufacturing offers new available categories of geometries to be built. Among those categories, one can find the well developing field of lattice structures. Attention has been paid on lattice structures for their ...
  • Parts internal structure definition using non-uniform patterned lattice optimization for mass reduction in additive manufacturing 
    CHOUGRANI, Laurent; PERNOT, Jean-Philippe; VERON, Philippe; ABED, Stéphane (Springer Nature, 2018)
    Today, being able to generate and produce shapes that fit mechanical and functional requirements and having as low as possible mass is crucial for aerospace and automotive applications. Besides, the rise of new additive ...

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales