• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • View Item
  • Home
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

[INVITED] An overview of the state of art in laser welding simulation

Article dans une revue avec comité de lecture
Author
FABBRO, Rémy
ccDAL, Morgan
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]

URI
http://hdl.handle.net/10985/16855
DOI
10.1016/j.optlastec.2015.09.015
Date
2016
Journal
Optics and Laser Technology

Abstract

The work presented in this paper deals with the laser welding simulation. Due to the rise of laser processing in industry, its simulation takes also more and more place. Nevertheless, the physical phenomena occurring are quite complex and, above all, very coupled. Thus, a state of art is necessary to summarize phenomena that have to be considered. Indeed, the electro-magnetic wave interacts with the material surface, heating the piece until the fusion and the vaporization. The vaporization induces a recoil pressure and deforms the liquid/vapor interface creating a vapor capillary. The heat diffused in the material produces thermal dilatation leading to mechanical stress and strain. As a complete simulation is too large to be computed with one model, the literature is composed by two kinds of models, the thermo-mechanical simulations and the multi-physical simulations. The first aims to find the mechanical stress and strain due to the welding. The model is usually simplified in order to reduce the simulation size. The second, compute the more accurately the thermal and the velocity fields. In that case authors usually search also the size of the weld bead and want to be totally self consistent. In this review, the major part of equations and assumptions needed to simulate laser welding are shown. Their effects on simulation results are illustrated for each simulation type. The paper aims to give sufficient knowledge and tools to allow a simulation of laser welding

Files in this item

Name:
PIMM_OLT_2016_DAL.pdf
Size:
5.644Mb
Format:
PDF
View/Open

Collections

  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)

Related items

Showing items related by title, author, creator and subject.

  • Laser-induced plume investigated by finite element modelling and scaling of particle entrainment in laser powder bed fusion 
    Article dans une revue avec comité de lecture
    MAYI, Yaasin; PEYRE, Patrice; BELLET, Michel; METTON, Charlotte; MORICONI, Clara; FABBRO, Rémy; ccDAL, Morgan (IOP Publishing, 2019)
    Although metal vaporisation has been observed in several laser processes such as drilling or welding, vapour plume expansion and its induced side effects are not fully understood. Especially, this phenomenon is garnering ...
  • Erratum: “Transient dynamics and stability of keyhole at threshold in laser powder bed fusion regime investigated by finite element modeling” [J. Laser Appl. 33, 012024 (2021)] 
    Article dans une revue avec comité de lecture
    MAYI, Yaasin A.; PEYRE, Patrice; BELLET, Michel; METTON, Charlotte; MORICONI, Clara; FABBRO, Remy; ccDAL, Morgan (Laser Institute of America, 2021)
    Correction
  • Analysis of laser–melt pool–powder bed interaction during the selective laser melting of a stainless steel 
    Article dans une revue avec comité de lecture
    GUNENTHIRAM, Valérie; PEYRE, Patrice; COSTE, Frédéric; FABBRO, Rémy; ccDAL, Morgan; ccSCHNEIDER, Matthieu (Laser Institute of America, 2017)
    The laser powder bed fusion (LPBF) or powder-bed additive layer manufacturing process is now recognized as a high-potential manufacturing process for complex metallic parts. However, many technical issues are still to ...
  • Experimental analysis of spatter generation and melt-pool behavior during the powder bed laser beam melting process 
    Article dans une revue sans comité de lecture
    GUNENTHIRAM, V; ccPEYRE, Patrice; ccSCHNEIDER, Matthieu; COSTE, Frédéric; FABBRO, Rémy; ccDAL, Morgan; ccKOUTIRI, Imade (Elsevier, 2018)
    The experimental analysis of spatter formation was carried out on an instrumented SLM set-up allowing the quantification of spatter ejections and possible correlation with melt-pool behavior. Considering nearly similar SLM ...
  • Analysis and possible estimation of keyhole depths evolution, using laser operating parameters and material properties 
    Article dans une revue avec comité de lecture
    FABBRO, Rémy; PEYRE, Patrice; COSTE, Frédéric; GUNENTHIRAM, V; ccDAL, Morgan; ccSCHNEIDER, Matthieu (Laser Institute of America, 2018)
    The authors propose an analysis of the effect of various operating parameters on the keyhole depth during laser welding. The authors have developed a model that uses the analysis of the thermal field obtained in 2D geometry, ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales