• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire Mechanics, Surfaces and Materials Processing (MSMP)
  • View Item
  • Home
  • Laboratoire Mechanics, Surfaces and Materials Processing (MSMP)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Experimental Studies on the Cutting Characteristics of Hybrid CFRP/Ti Stacks

Article dans une revue avec comité de lecture
Author
XU, Jinyang
ccEL MANSORI, Mohamed
211915 Mechanics surfaces and materials processing [MSMP]

URI
http://hdl.handle.net/10985/17645
DOI
10.1016/j.promfg.2016.08.024
Date
2016
Journal
Procedia Manufacturing

Abstract

Owing to their enhanced mechanical properties and improved structural functions, the use of hybrid CFRP/Ti stacks (a sandwich of one CFRP laminate and one Ti alloy) has experienced an increasing trend in modern aerospace industry. The emergence of such composite-to-metal alliances, however, poses a series of new challenges to the manufacturing sectors for high-quality finishing of the material-made components. The key machining problems usually arise from the disparate natures of the stacked constituents (CFRP laminate and Ti alloy) and their respective poor machinability. To study the fundamental cutting characteristics of the bi-material assembly, this paper presents an experimental study concerning the machinability evaluation of the hybrid CFRP/Ti stacks. An orthogonal cutting configuration (OCC) derived from the real manufacturing operation was adopted to finalize the CFRP/Ti cutting comprehension by using the polycrystalline diamond (PCD) tipped tools. The cutting trials were performed under the reasonable cutting sequence strategy of CFRP -> Ti as pointed out by most experimental studies. The key cutting responses including cutting forces, machined surface quality and tool wear mechanisms were precisely addressed versus the utilized cutting conditions. The experimental results highlight that a parametric combination of high cutting speeds and low feed rates often facilitates the reduction of cutting forces and induced damage extents. The basic damage modes promoted on the machined CFRP/Ti surfaces are observed to be fiber pullout, resin loss, surface cavity, deformation of feed marks and re-deposited materials. Moreover, the key wear mechanisms governing the PCD tool cutting are confirmed to be crater wear and flank wear, while the tool failure mode is edge chipping. To ensure the excellent machined surface quality, a stringent control of tool wear should be implemented when cutting hybrid CFRP/Ti stacks.

Files in this item

Name:
MSMP_PM_2016_ELMANSORI.pdf
Size:
1.293Mb
Format:
PDF
View/Open

Collections

  • Laboratoire Mechanics, Surfaces and Materials Processing (MSMP)

Related items

Showing items related by title, author, creator and subject.

  • Orthogonal cutting mechanisms of CFRP/Ti6Al4V stacks 
    Article dans une revue avec comité de lecture
    XU, Jinyang; CHEN, Ming; REN, Fei; ccEL MANSORI, Mohamed (Springer Verlag, 2019)
    The enhanced mechanical/physical properties and improved functionalities have made the carbon fiber–reinforced polymer/titanium alloy (CFRP/Ti6Al4V) stacks very attractive to the modern aerospace industry. However, the ...
  • An investigation of drilling high-strength CFRP composites using specialized drills 
    Article dans une revue avec comité de lecture
    XU, Jinyang; LI, Chao; CHEN, Ming; REN, Fei; ccEL MANSORI, Mohamed (Springer Verlag, 2019)
    Machining of high-strength carbon fiber reinforced polymers (CFRPs) has faced great challenges in quality control and tool wear management due to their inherent heterogeneity and high abrasiveness leading to serious workpiece ...
  • A Study on Drilling High-Strength CFRP Laminates: Frictional Heat and Cutting Temperature 
    Article dans une revue avec comité de lecture
    XU, Jinyang; LI, Chao; DANG, Jiaqiang; REN, Fei; ccEL MANSORI, Mohamed (MDPI, 2018)
    High-strength carbon fiber reinforced polymer (CFRP) composites have become popular materials to be utilized in the aerospace and automotive industries, due to their unique and superior mechanical properties. An understanding ...
  • Cutting Modeling of Hybrid CFRP/Ti Composite with Induced Damage Analysis 
    Article dans une revue avec comité de lecture
    XU, Jinyang; ccEL MANSORI, Mohamed (MDPI, 2016)
    In hybrid carbon fiber reinforced polymer (CFRP)/Ti machining, the bi-material interface is the weakest region vulnerable to severe damage formation when the tool cutting from one phase to another phase and vice versa. The ...
  • Wear characteristics of polycrystalline diamond tools in orthogonal cutting of CFRP/Ti stacks 
    Article dans une revue avec comité de lecture
    XU, Jinyang; ccEL MANSORI, Mohamed (Elsevier, 2017)
    CFRP/Ti stacks have become a viable alternative to conventional composite laminates and metal alloys in various aerospace applications because of their enhanced mechanical properties and improved structural functions. ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales