Laser-induced plume investigated by finite element modelling and scaling of particle entrainment in laser powder bed fusion
Type
Articles dans des revues avec comité de lectureAuthor
Date
2019Journal
Journal of Physics D: Applied PhysicsAbstract
Although metal vaporisation has been observed in several laser processes such as drilling or welding, vapour plume expansion and its induced side effects are not fully understood. Especially, this phenomenon is garnering scientific and industrial interest since recent investigations in laser powder bed fusion (LPBF) have designated metal vaporisation as main source of denudation and powder spattering. The present study aims to provide a new insight on the dynamics of laser-induced vaporisation and to assess the potential of different gases for particle entrainment. A self-consistent finite element model of laser-induced keyhole and plume is thus presented for this purpose, built from a comprehensive literature review. The model is validated with dedicated experimental diagnostics, involving high-speed imaging to measure the ascent velocity of the vapour plume. The transient dynamics of vapour plume is thus quantified for different laser incident intensities and gas flow patterns such as the mushroom-like structure of the vapour plume are analysed. Finally, the model is used as a tool to quantify the entrainment flow expected in LPBF and an analytical model is derived to define a velocity threshold for particle entrainment, expressed in term of background gas properties. Doing so it is possible to predict how denudation evolves when the gaseous atmosphere is changed.
Files in this item
Related items
Showing items related by title, author, creator and subject.
-
MAYI, Yaasin A.; DAL, Morgan; PEYRE, Patrice; BELLET, Michel; METTON, Charlotte; MORICONI, Clara; FABBRO, Remy (Laser Institute of America, 2021)A Finite element model is developed with a commercial code to investigate the keyhole dynamics and stability at keyhole threshold, a fusion regime characteristic to laser microwelding or to Laser Powder Bed Fusion. The ...
-
GUNENTHIRAM, Valérie; PEYRE, Patrice; SCHNEIDER, Matthieu; DAL, Morgan; COSTE, Frédéric; FABBRO, Rémy (Laser Institute of America, 2017)The laser powder bed fusion (LPBF) or powder-bed additive layer manufacturing process is now recognized as a high-potential manufacturing process for complex metallic parts. However, many technical issues are still to ...
-
FABBRO, Rémy; DAL, Morgan; PEYRE, Patrice; COSTE, Frédéric; SCHNEIDER, Matthieu; GUNENTHIRAM, V (Laser Institute of America, 2018)The authors propose an analysis of the effect of various operating parameters on the keyhole depth during laser welding. The authors have developed a model that uses the analysis of the thermal field obtained in 2D geometry, ...
-
GUNENTHIRAM, V; PEYRE, P; SCHNEIDER, MATTHIEU; DAL, Morgan; COSTE, Frédéric; KOUTIRI, Imade; FABBRO, Rémy (Elsevier, 2018)The experimental analysis of spatter formation was carried out on an instrumented SLM set-up allowing the quantification of spatter ejections and possible correlation with melt-pool behavior. Considering nearly similar SLM ...
-
PEYRE, Patrice; BERTHE, Laurent; DAL, Morgan; POUZET, Sébastien; SALLAMAND, Pierre; TOMASHCHUK, Iryna (Elsevier, 2014)Laser-induced reactive wetting and brazing of T40 titanium with A5754 aluminum alloy with 1.5 mm thickness was carried out in lap-joint configuration, with or without the use of Al5Si filler wire. A 2.4 mm diameter laser ...