• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • Voir le document
  • Accueil de SAM
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Non-intrusive Sparse Subspace Learning for Parametrized Problems

Article dans une revue avec comité de lecture
Auteur
BORZACCHIELLO, Domenico
111023 École Centrale de Nantes [ECN]
AGUADO, José Vicente
111023 École Centrale de Nantes [ECN]
ccCHINESTA SORIA, Francisco
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]

URI
http://hdl.handle.net/10985/18435
DOI
10.1007/s11831-017-9241-4
Date
2019
Journal
Archives of Computational Methods in Engineering

Résumé

We discuss the use of hierarchical collocation to approximate the numerical solution of parametric models. With respect to traditional projection-based reduced order modeling, the use of a collocation enables non-intrusive approach based on sparse adaptive sampling of the parametric space. This allows to recover the low-dimensional structure of the parametric solution subspace while also learning the functional dependency from the parameters in explicit form. A sparse low-rank approximate tensor representation of the parametric solution can be built through an incremental strategy that only needs to have access to the output of a deterministic solver. Non-intrusiveness makes this approach straightforwardly applicable to challenging problems characterized by nonlinearity or non affine weak forms. As we show in the various examples presented in the paper, the method can be interfaced with no particular effort to existing third party simulation software making the proposed approach particularly appealing and adapted to practical engineering problems of industrial interest.

Fichier(s) constituant cette publication

Nom:
PIMM_ACME_2019_CHINESTA.pdf
Taille:
7.818Mo
Format:
PDF
Description:
Article
Voir/Ouvrir

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • Advanced parametric space-frequency separated representations in structural dynamics: A harmonic–modal hybrid approach 
    Article dans une revue avec comité de lecture
    MUHAMMAD HARIS, Malik; BORZACCHIELLO, Domenico; AGUADO, José Vicente; ccCHINESTA SORIA, Francisco (Elsevier Masson, 2018)
    This paper is concerned with the solution to structural dynamics equations. The technique here presented is closely related to Harmonic Analysis, and therefore it is only concerned with the long-term forced response. Proper ...
  • Tensor Representation of Non-linear Models Using Cross Approximations 
    Article dans une revue avec comité de lecture
    AGUADO, Jose Vicente; BORZACCHIELLO, Domenico; KOLLEPARA, Kiran S.; HUERTA, Antonio; ccCHINESTA SORIA, Francisco (Springer Verlag, 2019)
    Tensor representations allow compact storage and efficient manipulation of multi-dimensional data. Based on these, tensor methods build low-rank subspaces for the solution of multi-dimensional and multi-parametric models. ...
  • Induction machine model with finite element accuracy for condition monitoring running in real time using hardware in the loop system 
    Article dans une revue avec comité de lecture
    SAPENA-BAÑÓ, Angel; AGUADO, Jose Vicente; BORZACCHIELLO, Domenico; PUCHE-PANADERO, Rubén; ccCHINESTA SORIA, Francisco (Elsevier, 2019)
    Most industrial processes are run by induction machines (IMs). Condition monitoring of IM assures their continuity of service, and it may avoid highly costly breakdowns. Among the methods for condition monitoring, on-line ...
  • Intelligent assistant system as a context-aware decision-making support for the workers of the future 
    Article dans une revue avec comité de lecture
    BELKADI, Farouk; DHUIEB, Mohamed Anis; AGUADO, José Vicente; LAROCHE, Florent; BERNARD, Alain; ccCHINESTA SORIA, Francisco (Elsevier, 2020)
    The key role of information and communication technologies (ICT) to improve manufacturing productivity within the paradigm of factory of the future is often proved. These tools are used in a wide range of product lifecycle ...
  • kPCA-Based Parametric Solutions Within the PGD Framework 
    Article dans une revue avec comité de lecture
    GONZÁLEZ, David; AGUADO, José Vicente; ccABISSET-CHAVANNE, Emmanuelle; ccCHINESTA SORIA, Francisco (Springer Verlag, 2018)
    Parametric solutions make possible fast and reliable real-time simulations which, in turn allow real time optimization, simulation-based control and uncertainty propagation. This opens unprecedented possibilities for robust ...

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales