• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • View Item
  • Home
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Parametric inverse impulse response based on reduced order modeling and randomized excitations

Article dans une revue avec comité de lecture
Author
MONTAGUD, Santiago
1002421 Institut de Mécanique et d'Ingénierie [I2M]
AGUADO, José Vicente
111023 École Centrale de Nantes [ECN]
JOYOT, Pierre
1002421 Institut de Mécanique et d'Ingénierie [I2M]
ccCHINESTA SORIA, Francisco
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]

URI
http://hdl.handle.net/10985/18363
DOI
10.1016/j.ymssp.2019.106392
Date
2020
Journal
Mechanical Systems and Signal Processing

Abstract

This paper is concerned with the computation of the inverse impulse response of a parametrized structural dynamics problem using reduced-order modeling and randomized excitations. A two-stages approach is proposed, involving the solution of both direct and inverse problems. In the first stage, the parametrized structural dynamics problem is formulated in the frequency domain, and solved using a reduced-order modeling approach. As a result, the parametric transfer function of the structure is obtained, and then readily transformed into a parametric direct impulse response (DIR). In the second stage, the parametric inverse impulse response (IIR) is computed. We use randomized excitations to generate synthetic samples inexpensively from the parametric DIR. Based on these, the parametric IIR is computed by minimizing the mean square error between the estimate and the samples. Most importantly, we show that the randomized excitations can be generated by sampling the frequency domain only. Hence, the parametric domain does not need to be sampled, which makes the computation of the parametric IIR very efficient.

Files in this item

Name:
PIMM_MSSP_ 2020_CHINESTA.pdf
Size:
1.679Mb
Format:
PDF
Description:
Article
Embargoed until:
2020-07-31
View/Open

Collections

  • Institut de Mécanique et d’Ingénierie de Bordeaux (I2M)
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)

Related items

Showing items related by title, author, creator and subject.

  • Intelligent assistant system as a context-aware decision-making support for the workers of the future 
    Article dans une revue avec comité de lecture
    BELKADI, Farouk; DHUIEB, Mohamed Anis; AGUADO, José Vicente; LAROCHE, Florent; BERNARD, Alain; ccCHINESTA SORIA, Francisco (Elsevier, 2020)
    The key role of information and communication technologies (ICT) to improve manufacturing productivity within the paradigm of factory of the future is often proved. These tools are used in a wide range of product lifecycle ...
  • Non-intrusive Sparse Subspace Learning for Parametrized Problems 
    Article dans une revue avec comité de lecture
    BORZACCHIELLO, Domenico; AGUADO, José Vicente; ccCHINESTA SORIA, Francisco (Springer Verlag, 2019)
    We discuss the use of hierarchical collocation to approximate the numerical solution of parametric models. With respect to traditional projection-based reduced order modeling, the use of a collocation enables non-intrusive ...
  • Advanced parametric space-frequency separated representations in structural dynamics: A harmonic–modal hybrid approach 
    Article dans une revue avec comité de lecture
    MUHAMMAD HARIS, Malik; BORZACCHIELLO, Domenico; AGUADO, José Vicente; ccCHINESTA SORIA, Francisco (Elsevier Masson, 2018)
    This paper is concerned with the solution to structural dynamics equations. The technique here presented is closely related to Harmonic Analysis, and therefore it is only concerned with the long-term forced response. Proper ...
  • kPCA-Based Parametric Solutions Within the PGD Framework 
    Article dans une revue avec comité de lecture
    GONZÁLEZ, David; AGUADO, José Vicente; ccABISSET-CHAVANNE, Emmanuelle; ccCHINESTA SORIA, Francisco (Springer Verlag, 2018)
    Parametric solutions make possible fast and reliable real-time simulations which, in turn allow real time optimization, simulation-based control and uncertainty propagation. This opens unprecedented possibilities for robust ...
  • Tensor Representation of Non-linear Models Using Cross Approximations 
    Article dans une revue avec comité de lecture
    AGUADO, Jose Vicente; BORZACCHIELLO, Domenico; KOLLEPARA, Kiran S.; HUERTA, Antonio; ccCHINESTA SORIA, Francisco (Springer Verlag, 2019)
    Tensor representations allow compact storage and efficient manipulation of multi-dimensional data. Based on these, tensor methods build low-rank subspaces for the solution of multi-dimensional and multi-parametric models. ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales