• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • View Item
  • Home
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Physically sound, self-learning digital twins for sloshing fluids

Article dans une revue avec comité de lecture
Author
MOYA, Beatriz
95355 University of Zaragoza - Universidad de Zaragoza [Zaragoza]
ALFARO, Iciar
95355 University of Zaragoza - Universidad de Zaragoza [Zaragoza]
GONZALEZ, David
95355 University of Zaragoza - Universidad de Zaragoza [Zaragoza]
CHINESTA, Francisco
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
CUETO, Elías
95355 University of Zaragoza - Universidad de Zaragoza [Zaragoza]

URI
http://hdl.handle.net/10985/18975
DOI
10.1371/journal.pone.0234569
Date
2020
Journal
PLoS ONE

Abstract

In this paper, a novel self-learning digital twin strategy is developed for fluid sloshing phenomena. This class of problems is of utmost importance for robotic manipulation of fluids, for instance, or, in general, in simulation-assisted decision making. The proposed method infers the (linear or non-linear) constitutive behavior of the fluid from video sequences of the sloshing phenomena. Real-time prediction of the fluid response is obtained from a reduced order model (ROM) constructed by means of thermodynamics-informed data-driven learning. From these data, we aim to predict the future response of a twin fluid reacting to the movement of the real container. The constructed system is able to perform accurate forecasts of its future reactions to the movements of the containers. The system is completed with augmented reality techniques, so as to enable comparisons among the predicted result with the actual response of the same liquid and to provide the user with insightful information about the physics taking place.

Files in this item

Name:
PIMM_PO_2020_CHINESTA.pdf
Size:
1.894Mb
Format:
PDF
Description:
Article
View/Open

Collections

  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)

Related items

Showing items related by title, author, creator and subject.

  • PGD-Based Computational Vademecum for Efficient Design, Optimization and Control 
    Article dans une revue avec comité de lecture
    CHINESTA, Francisco; LEYGUE, Adrien; BORDEU, Felipe; AGUADO, Jose Vicente; CUETO, Elias; GONZALEZ, David; ALFARO, Iciar; AMMAR, Amine; HUERTA, Antonio (Springer Verlag, 2013)
    In this paper we are addressing a new paradigm in the field of simulation-based engineering sciences (SBES) to face the challenges posed by current ICT technologies. Despite the impressive progress attained by simulation ...
  • Data-driven GENERIC modeling of poroviscoelastic materials 
    Article dans une revue avec comité de lecture
    GHNATIOS, Chady; ALFARO, Iciar; GONZÁLEZ, David; CHINESTA, Francisco; CUETO, Elías G. (MDPI, 2019)
    Biphasic soft materials are challenging to model by nature. Ongoing efforts are targeting their effective modeling and simulation. This work uses experimental atomic force nanoindentation of thick hydrogels to identify the ...
  • Real‐time interaction of virtual and physical objects in mixed reality applications 
    Article dans une revue avec comité de lecture
    BADÍAS, Alberto; GONZÁLEZ, David; ALFARO, Iciar; CHINESTA, Francisco; CUETO, Elías (Wiley, 2020)
    We present a real-time method for computing the mechanical interaction between real and virtual objects in an augmented reality environment. Using model order reduction methods we are able to estimate the physical behavior ...
  • Learning slosh dynamics by means of data 
    Article dans une revue avec comité de lecture
    MOYA, Beatriz; GONZÁLEZ, David; ALFARO, Iciar; CHINESTA, Francisco; CUETO, Elías G. (Springer Verlag, 2019)
    In this work we study several learning strategies for fluid sloshing problems based on data. In essence, a reduced-order model of the dynamics of the free surface motion of the fluid is developed under rigorous thermodynamics ...
  • Real-time in silico experiments on gene regulatory networks and surgery simulation on handheld devices 
    Article dans une revue avec comité de lecture
    ALFARO, Iciar; GONZALEZ, David; BORDEU, Felipe; LEYGUE, Adrien; AMMAR, Amine; CUETO, Elias; CHINESTA, Francisco (Springer Verlag, 2014)
    Simulation of all phenomena taking place in a surgical procedure is a formidable task that involves, when possible, the use of supercomputing facilities over long time periods. However, decision taking in the operating ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales