Physically sound, self-learning digital twins for sloshing fluids
Article dans une revue avec comité de lecture
Abstract
In this paper, a novel self-learning digital twin strategy is developed for fluid sloshing phenomena. This class of problems is of utmost importance for robotic manipulation of fluids, for instance, or, in general, in simulation-assisted decision making. The proposed method infers the (linear or non-linear) constitutive behavior of the fluid from video sequences of the sloshing phenomena. Real-time prediction of the fluid response is obtained from a reduced order model (ROM) constructed by means of thermodynamics-informed data-driven learning. From these data, we aim to predict the future response of a twin fluid reacting to the movement of the real container. The constructed system is able to perform accurate forecasts of its future reactions to the movements of the containers. The system is completed with augmented reality techniques, so as to enable comparisons among the predicted result with the actual response of the same liquid and to provide the user with insightful information about the physics taking place.
Files in this item
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lectureMOYA, Beatriz; GONZÁLEZ, David; CUETO, Elias; ALFARO, Icíar; CHINESTA SORIA, Francisco (Springer Verlag, 2019)In this work we study several learning strategies for fluid sloshing problems based on data. In essence, a reduced-order model of the dynamics of the free surface motion of the fluid is developed under rigorous thermodynamics ...
-
Article dans une revue avec comité de lectureMOYA, Beatriz; BADÍAS, Alberto; ALFARO, Icíar; CUETO, Elias; CHINESTA SORIA, Francisco (Wiley, 2022-06)Digital twins can be defined as digital representations of physical entities that employ real-time data to enable understanding of the operating conditions of these entities. Here we present a particular type of digital ...
-
Article dans une revue avec comité de lecturePhysics perception very often faces the problem that only limited data or partial measurements on the scene are available. In this work, we propose a strategy to learn the full state of sloshing liquids from measurements ...
-
Article dans une revue avec comité de lectureMOYA GARCÍA, Beatriz; BADIAS, Alberto; GONZALEZ, David; CHINESTA SORIA, Francisco; CUETO, Elias (2023)Learning and reasoning about physical phenomena is still a challenge in robotics development, and computational sciences play a capital role in the search for accurate methods able to provide explanations for past events ...
-
Article dans une revue avec comité de lectureBADÍAS, Alberto; CURTIT, Sarah; GONZÁLEZ, David; CUETO, Elias; ALFARO, Icíar; CHINESTA SORIA, Francisco (Wiley, 2019)While modern CFD tools are able to provide the user with reliable and accurate simulations, there is a strong need for interactive design and analysis tools. State-of-the-art CFD software employs massive resources in terms ...