• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • View Item
  • Home
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A thermodynamics-informed active learning approach to perception and reasoning about fluids

Article dans une revue avec comité de lecture
Author
ccMOYA GARCÍA, Beatriz
ccBADIAS, Alberto
GONZALEZ, David
ccCHINESTA SORIA, Francisco
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
ccCUETO, Elias

URI
http://hdl.handle.net/10985/24727
DOI
10.1007/s00466-023-02279-x
Date
2023
Journal
Comput Mech

Abstract

Learning and reasoning about physical phenomena is still a challenge in robotics development, and computational sciences play a capital role in the search for accurate methods able to provide explanations for past events and rigorous forecasts of future situations. We propose a thermodynamics-informed active learning strategy for fluid perception and reasoning from observations. As a model problem, we take the sloshing phenomena of different fluids contained in a glass. Starting from full-field and high-resolution synthetic data for a particular fluid, we develop a method for the tracking (perception) and simulation (reasoning) of any previously unseen liquid whose free surface is observed with a commodity camera. This approach demonstrates the importance of physics and knowledge not only in data-driven (gray-box) modeling but also in real-physics adaptation in low-data regimes and partial observations of the dynamics. The presented method is extensible to other domains such as the development of cognitive digital twins able to learn from observation of phenomena for which they have not been trained explicitly.

Files in this item

Name:
PIMM-Comp.Mec.-2023-Chinesta.pdf
Size:
4.019Mb
Format:
PDF
View/Open

Collections

  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)

Related items

Showing items related by title, author, creator and subject.

  • Physics Perception in Sloshing Scenes With Guaranteed Thermodynamic Consistency 
    Article dans une revue avec comité de lecture
    MOYA, Beatriz; BADIAS, Alberto; GONZALEZ, David; ccCHINESTA SORIA, Francisco; ccCUETO, Elias (2023)
    Physics perception very often faces the problem that only limited data or partial measurements on the scene are available. In this work, we propose a strategy to learn the full state of sloshing liquids from measurements ...
  • Digital twins that learn and correct themselves 
    Article dans une revue avec comité de lecture
    MOYA, Beatriz; BADÍAS, Alberto; ALFARO, Icíar; ccCHINESTA SORIA, Francisco; ccCUETO, Elias (Wiley, 2022-06)
    Digital twins can be defined as digital representations of physical entities that employ real-time data to enable understanding of the operating conditions of these entities. Here we present a particular type of digital ...
  • Learning slosh dynamics by means of data 
    Article dans une revue avec comité de lecture
    MOYA, Beatriz; GONZÁLEZ, David; ccCUETO, Elias; ALFARO, Icíar; ccCHINESTA SORIA, Francisco (Springer Verlag, 2019)
    In this work we study several learning strategies for fluid sloshing problems based on data. In essence, a reduced-order model of the dynamics of the free surface motion of the fluid is developed under rigorous thermodynamics ...
  • Physically sound, self-learning digital twins for sloshing fluids 
    Article dans une revue avec comité de lecture
    MOYA, Beatriz; GONZALEZ, David; ccCUETO, Elias; ALFARO, Icíar; ccCHINESTA SORIA, Francisco (Public Library of Science, 2020)
    In this paper, a novel self-learning digital twin strategy is developed for fluid sloshing phenomena. This class of problems is of utmost importance for robotic manipulation of fluids, for instance, or, in general, in ...
  • A Data-Driven Learning Method for Constitutive Modeling: Application to Vascular Hyperelastic Soft Tissues 
    Article dans une revue avec comité de lecture
    GONZÁLEZ, David; GARCÍA-GONZÁLEZ, Alberto; ccCUETO, Elias; ccCHINESTA SORIA, Francisco (MDPI, 2020)
    We address the problem of machine learning of constitutive laws when large experimental deviations are present. This is particularly important in soft living tissue modeling, for instance, where large patient-dependent ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales