• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • View Item
  • Home
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Learning slosh dynamics by means of data

Article dans une revue avec comité de lecture
Author
MOYA, Beatriz
GONZÁLEZ, David
ccCUETO, Elias
ALFARO, Icíar
95355 Universidad de Zaragoza = University of Zaragoza [Saragossa University] = Université de Saragosse
ccCHINESTA SORIA, Francisco
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]

URI
http://hdl.handle.net/10985/17933
DOI
10.1007/s00466-019-01705-3
Date
2019
Journal
Computational Mechanics

Abstract

In this work we study several learning strategies for fluid sloshing problems based on data. In essence, a reduced-order model of the dynamics of the free surface motion of the fluid is developed under rigorous thermodynamics settings. This model is extracted from data by exploring several strategies. First, a linear one, based on the employ of Proper Orthogonal Decomposition techniques is analyzed. Second, a strategy based on the employ of Locally Linear Embedding is studied. Finally, Topological Data Analysis is employed to the same end. All the three distinct possibilities rely on a numerical integration scheme to advance the dynamics in time. This thermodynamically consistent integrator is developed on the basis of the General Equation for Non-Equilibrium Reversible–Irreversible Coupling, GENERIC [M. Grmela and H.C Oettinger (1997). Phys. Rev. E. 56 (6): 6620–6632], framework so as to guarantee the satisfaction of first principles (particularly, the laws of thermodynamics). We show how the resulting method employs a few degrees of freedom, while it allows for a realistic reconstruction of the fluid dynamics of sloshing processes under severe real-time constraints. The proposed method is shown to run faster than real time in a standard laptop.

Files in this item

Name:
PIMM_CM_ 2019_CHINESTA.pdf
Size:
1.832Mb
Format:
PDF
Description:
Article
View/Open

Collections

  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)

Related items

Showing items related by title, author, creator and subject.

  • Physically sound, self-learning digital twins for sloshing fluids 
    Article dans une revue avec comité de lecture
    MOYA, Beatriz; GONZALEZ, David; ccCUETO, Elias; ALFARO, Icíar; ccCHINESTA SORIA, Francisco (Public Library of Science, 2020)
    In this paper, a novel self-learning digital twin strategy is developed for fluid sloshing phenomena. This class of problems is of utmost importance for robotic manipulation of fluids, for instance, or, in general, in ...
  • Digital twins that learn and correct themselves 
    Article dans une revue avec comité de lecture
    MOYA, Beatriz; BADÍAS, Alberto; ALFARO, Icíar; ccCHINESTA SORIA, Francisco; ccCUETO, Elias (Wiley, 2022-06)
    Digital twins can be defined as digital representations of physical entities that employ real-time data to enable understanding of the operating conditions of these entities. Here we present a particular type of digital ...
  • A thermodynamics-informed active learning approach to perception and reasoning about fluids 
    Article dans une revue avec comité de lecture
    ccMOYA GARCÍA, Beatriz; ccBADIAS, Alberto; GONZALEZ, David; ccCHINESTA SORIA, Francisco; ccCUETO, Elias (2023)
    Learning and reasoning about physical phenomena is still a challenge in robotics development, and computational sciences play a capital role in the search for accurate methods able to provide explanations for past events ...
  • Physics Perception in Sloshing Scenes With Guaranteed Thermodynamic Consistency 
    Article dans une revue avec comité de lecture
    MOYA, Beatriz; BADIAS, Alberto; GONZALEZ, David; ccCHINESTA SORIA, Francisco; ccCUETO, Elias (2023)
    Physics perception very often faces the problem that only limited data or partial measurements on the scene are available. In this work, we propose a strategy to learn the full state of sloshing liquids from measurements ...
  • Data-driven GENERIC modeling of poroviscoelastic materials 
    Article dans une revue avec comité de lecture
    GONZÁLEZ, David; ccCUETO, Elias; ALFARO, Icíar; ccGHNATIOS, Chady; ccCHINESTA SORIA, Francisco (MDPI, 2019)
    Biphasic soft materials are challenging to model by nature. Ongoing efforts are targeting their effective modeling and simulation. This work uses experimental atomic force nanoindentation of thick hydrogels to identify the ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales